簡易檢索 / 詳目顯示

研究生: Leta Deressa Tolesa
Leta Deressa Tolesa
論文名稱: 利用離子液體或其水溶液於木質素萃取與解聚的研究
Lignin Extraction and Depolymerization with Ionic Liquids or Their Aqueous Solutions
指導教授: 李明哲
Ming-Jer Lee
口試委員: Meng-Hui Li
Meng-Hui Li
Li-Jen Chen
Li-Jen Chen
Shiang-Tai Lin
Shiang-Tai Lin
蔡伸隆
Shen-Long Tsai
李豪業
Hao-Yeh Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 244
中文關鍵詞: BiomassCoffee huskExtractionLigninDepolymerizationIonic liquid
外文關鍵詞: Biomass, Coffee husk, Extraction, Lignin, Depolymerization, Ionic liquid
相關次數: 點閱:319下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們開發一種可以選擇性降解木質素成為有價值之酚類化合物的銨基離子液體的綠色方法。研究中利用色譜(凝膠滲透色譜(GPC)和GC-MS)和各種分光光譜(FT-IR,1H NMR和13C NMR)等技術,探討所選定之銨基離子液體(包括[DIPEA][Ac],[DIPEA][O],[DIPEA][Bn],[DIPEA][Cl],[DMBA][Ac]和[DMBA][B] 對解聚鹼性木質素的影響)。由實驗的結果討論了反應條件(濃度、反應溫度、反應時間)和離子液體之疏水性等操作參數對解聚效率的影響。 此外,我們也提出了在這種離子液體輔助下,木質素解聚程序的反應機構。
為了確認離子液體水溶液濃度對解聚程序的影響,我們在180 ℃反應時間為60分鐘下進行一系列的實驗,各液體水溶液濃度包括50 wt %與80 wt %的[DMBA][Ac]水溶液及30 wt %,50 wt %,80 wt %的[DMBA][B]水溶液。分析結果表明,這些離子液體水溶液即使在較低濃度下,也對將木質素轉化為有價值的化學品具有相當高的能力。分子量分佈分析顯示,在180℃且反應60分鐘下,使用80 wt %的[DMBA][Ac]水溶液和80 wt %的[DMBA][B]水溶液,可分別將平均分子量降低了93%與86%。由GC-MS鑑定出產物的化學物質,大都是有價值的芳香族化合物,並且利用FTIR和NMR分析到的官能基團與質譜分析的結果一致。
除了將鹼性木質素轉化為有價值的化學品之外,本研究也探討廢咖啡殼的利用。本研究使用含銨的純質離子液體來萃取和選擇性解聚由咖啡殼中萃出的木質素,且利用FT-IR,GPC,GC-MS,UV-Vis,1H,13C NMR,HSQC-NMR,TGA,XRD,SEM等方法,對被萃出的木質素特性進行表徵分析。分析結果證實,離子液體; [DIPEA][Ac],[DIPEA][P],[DIPEA][O]和[DIPEA][Bn]能有效地溶解生物質,並將大部分萃出的木質素解聚成低分子量的酚類化合物和寡聚物。此種方法被離子液體所提取的木質素產率最高可達原始木質素的71.2%。故本研究所提出的從廢咖啡殼中產製出高價值化學品的方法,具有經濟上和環境上的吸引力。
本研究之系列分析的結果證明,具高分子結構的木質素可轉化為其單體和寡聚物。這也證實了本研究所探討的所有離子液體具有將木質素轉化為有價值之芳族化合物的潛力。一般而言,本研究所選擇的離子液體的確具有雙功能性質(溶劑化介質+催化劑),因此可用於木質素的萃取與解聚。由於木質素早已被認定為製造眾多化學品的合適原料,因此,本研究提出有效的萃取與降解木質素的方法,並且是乾淨程序與對環境友善。對於從替代之原料經清潔生產程序產製有價值之化學品非常有幫助。


In the present study, an ammonium-based ionic liquids (ILs)-assisted green method is developed to selectively depolymerize lignin into the valuable phenolic compounds. The influence of the selected ammonium-based ionic liquids; [DIPEA][Ac], [DIPEA][O], [DIPEA][Bn], [DIPEA][Cl], [DMBA][Ac] and [DMBA][B], on depolymerization of the alkali lignin is investigated by using chromatographic (gel permeation chromatography (GPC) and GC-MS) and various spectroscopic (FTIR, 1H NMR, and 13C NMR) techniques. The effects of the operating parameters including reaction conditions (concentration, temperature and elapsed time of reaction) and hydrophobicity of the ionic liquids, on the efficiency of the depolymerization process are discussed. In addition, the mechanism of the investigated ILs-assisted lignin depolymerization process is also proposed.
To confirm the influence of concentration of the aqueous ionic liquid solutions on depolymerization process, a series of experiments using 50 wt % and 80 wt % of aqueous [DMBA][Ac] solutions and 30 wt %, 50 wt % and 80 wt % of aqueous [DMBA][B] solutions are conducted to lignin at 180 °C for 60 min. The analysis results show that these aqueous ionic liquids solutions have great ability to produce valuable chemicals from lignin even at lower concentration. The analysis of molecular weight distribution displays that the average molecular weight reduces by 93% in 80 wt % aqueous [DMBA][Ac] solution and by 86% in 80 wt % aqueous [DMBA][B] solution at 180 °C for 60 min. Most of the chemicals in the product identified by GC-MS are valuable aromatic compounds whose functional groups analyses by FTIR and NMR study are in good agreement with the result of mass spectra.
In addition to conversion of alkali lignin to valuable chemicals, the utilization of the waste coffee husk is also investigated. This method involves extraction and selective depolymerization of the lignin content in coffee husk by using pure ammonium-based ionic liquids (ILs). The extracted lignin was characterized by FT-IR, GPC, GC-MS, UV-Vis, 1H and 13C NMR, HSQC-NMR, TGA, XRD, SEM. The analysis results confirmed that the ionic liquids, [DIPEA][Ac], [DIPEA][P], [DIPEA][O], and [DIPEA][Bn], can effectively dissolve the biomass and decompose the major part of the extracted lignin into lower molecular weight phenolic compounds and oligomers. The yield of IL-isolated lignin can be as high as 71.2% of the original lignin. The proposed method is economically and environmentally attractive for producing high add-value chemicals from wasted coffee husk.
The results of the analysis proved that the polymeric structure of lignin is converted into its monomers and oligomers. This confirms the potentiality of these all ionic liquids for the conversion of lignin into valuable aromatic compounds. Generally, our study reveals the bi-functional nature (solvation medium + catalytic agent) of the selected ionic liquids for the extraction and depolymerization of the lignin. Since lignin is well recognized as a suitable resource for the essential chemicals, therefore, the present study is very useful in refining an alternative source for the clean production of the valuable chemicals.

摘要 III Abstract IV Acknowledgements VII List of Tables XI List of Figures XIII 1. Introduction 1 2. Literature review 9 2.1. The chemical composition of wood 9 2.1.1. Cellulose 10 2.1.2. Hemicellulose 11 2.1.3. Lignin 12 2.2. Types of lignin and their extraction methods 15 2.2.1. Sulfite process 16 2.2.2. Kraft process 17 2.2.3. Soda process 17 2.2.4. Organosolv process 18 2.3. Chemical depolymerization of lignin 22 2.3.1. Base-catalyzed lignin depolymerization 22 2.3.2. Acid-catalyzed lignin depolymerization 23 2.3.3. Metal-catalyzed lignin depolymerization 24 2.3.4. Supercritical fluid assisted lignin depolymerization 26 2.3.5. Ionic liquid assisted lignin depolymerization 27 2.4. Aim of the study and survey of the contents 32 3. Experimental section 34 3.1. Materials 34 3.2. Synthesis of ionic liquids 36 3.3. Lignin extraction from coffee husk 37 3.3.1. Product separation and characterization 38 3.4. Depolymerization of lignin 38 3.5. Analysis techniques 40 3.5.1. Gel permeation chromatography (GPC) 40 3.5.2. Fourier-transform infrared spectroscopy (FT-IR) 40 3.5.3. Ultraviolet visible spectrophotometer (UV-Vis) 41 3.5.4. Gas chromatography–mass spectrometry (GC-MS) 41 3.5.5. Nuclear magnetic resonance (NMR) 42 3.5.6. Thermogravimetric analysis (TGA) 42 3.5.7. X-ray scattering techniques (XRD) 43 3.5.8. Field-emission scanning electron microscopy (FESEM) 43 3.5.9. Determination of lignin content in coffee husk 43 4. Results and discussion 51 4.1. Ionic liquid based depolymerization of lignin 51 4.2. Molecular weight distributions (MWD) 52 4.3. FT-IR analysis 59 4.4. GC-MS analysis 65 4.5. NMR analysis 68 4.6. Factors affecting the progress of depolymerization of lignin 73 4.6.1. Effect of the structure of ILs 73 4.6.2. Effect of reaction temperature 76 4.6.3. Effect of reaction time 78 4.6.4. Effect of concentration of the ionic liquid 81 4.7. Mechanism of ILs-assisted depolymerization 82 5. Extraction of lignin from coffee husk by ionic liquids 151 5.1. Fourier transform infrared spectroscopy (FT-IR) 152 5.2. UV-spectroscopic analysis 153 5.3. Molar mass distribution of the ionic liquids extracted lignin 154 5.4. Thermogravimetric analysis (TGA) 156 5.5. Morphological analysis (SEM) 158 5.6. X-ray diffraction (XRD) 159 5.7. NMR spectra 160 5.8. Quantification of lignin extracted by ILs 163 6. Conclusions 191 References 195 List of Publications 218 Nomenclatures 219 Biographical Data 221

Ahuja, D., Kaushik, A., Chauhan, G.S. Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int. J. Biol. Macromolec. 2017, 97, 403-410.
Amde, M., Liu, J.F., Pang, L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ. Sci. Technol. 2015, 49, 12611-12627.
An, Y.-X., Zong, M.-H., Hu, S.-Q., Li, N. Effect of residual lignins present in cholinium ionic liquid-pretreated rice straw on the enzymatic hydrolysis of cellulose. Chem. Eng. Sci. 2017,161, 48-56.
Angelini, S., Ingles, D., Gelosia, M., Cerruti, P., Pompili, E., Scarinzi, G., Cavalaglio, G., Cotana, F., Malinconico, M. One-pot lignin extraction and modification in γ-valerolactone from steam explosion pre-treated lignocellulosic biomass. J. Clean. Prod. 2017, 151, 152-162.
Anouti, M., Caravanier, M. C., Floch, C. L., Lemordant, D. Alkylammonium-based protic ionic liquids part I: preparation and physicochemical characterization. J. Phys. Chem. B. 2008, 112, 9406–9411.
Anugwom, I., Eta, V., Virtanen, P., Mäki-Arvela, P., Hedenström, M., Yibo, M., Hummel, M., Sixta, H., Mikkola, J.-P. Towards optimal selective fractionation for Nordic woody biomass using novel amine–organic superbase derived switchable ionic liquids (SILs). Biomass Bioenerg. 2014, 70, 373-381.
Atz Dick, T., Couve, J., Gimello, O., Mas, A., Robin, J.-J. Chemical modification and plasma-induced grafting of pyrolitic lignin: evaluation of the reinforcing effect on lignin/poly( l -lactide) composites. Polymer 2017, 118, 280-296.
Azadfar, M., Gao, A.H., Bule, M.V., Chen, S. Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromolec. 2015, 75, 58-66.
Badgujar, K.C., Bhanage, B.M. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresour. Technol. 2014, 178, 2-18.
Bai, Y.Y., Xiao, L.P., Shi, Z.J., Sun, R.C. Structural variation of bamboo lignin before and after ethanol organosolv pretreatment. Int. J. Mol. Sci. 2013, 14, 21394-21413.
Bajwa, D.S., Wang, X., Sitz, E., Loll, T., Bhattacharjee, S. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. Int. J. Biol. Macromolec. 2016, 89, 265-272.
Barta, K., Matson, T. D., Fettig, M. L., Scott, S. L., Iretskii, A. V., Ford, P. C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem. 2010, 12(9), 1640–1647.
Barta, K., Warner, G. R., Beach, E. S., Anastas, P. T. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides. Green Chem. 2014, 16(1), 191–196.
Basu, S., Omadjela, O., Zimmer, J., Catchmark, J.M. Impact of plant matrix polysaccharides on cellulose produced by surface-tethered cellulose synthases. Carbohydr. Polym. 2017, 162, 93-99.
Behling, R., Valange, S., Chatel, G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem. 2016, 18(7), 1839-1854.
Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550.
Cai, Z., Li, Y., He, H., Zeng, Q., Long, J., Wang, L., Li, X. Catalytic depolymerization of organosolv lignin in a novel water/oil emulsion reactor: lignin as the self-surfactant. Ind. Eng. Chem. Res. 2015, 54, 11501-11510.
Calvo-Flores, F. G., Dobado, J. A. Lignin as renewable raw material. ChemSusChem 2010, 3(11), 1227-1235.
Carneiro, A.P., Rodriguez, O., Macedo, E.A. Dissolution and fractionation of nut shells in ionic liquids. Bioresour. Technol. 2017, 227, 188-196.
Casas, A., Omar, S., Palomar, J., Oliet, M., Alonso, M.V., Rodriguez, F. Relation between differential solubility of cellulose and lignin in ionic liquids and activity coefficients. RSC Adv. 2013, 3, 3453.
Chandra, R.P., Chu, Q., Hu, J., Zhong, N., Lin, M., Lee, J.S., Saddler, J. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Bioresour. Technol. 2016, 199, 135-41.
Chen, P., Zhang, Q., Shu, R., Xu, Y., Ma, L., Wang, T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour. Technol. 2017, 226, 125-131.
Chinnappan, A., Kim, H. Environmentally benign catalyst: synthesis, characterization, and properties of pyridinium dicationic molten salts (ionic liquids) and use of application in esterification. Chem. Eng. J. 2012, 187, 283-288.
Chung, H., Washburn, N.R. Improved lignin polyurethane properties with Lewis acid treatment. ACS Appl. Mater. Interfaces, 2012, 4, 2840−2846.
Constant, S., Basset, C., Dumas, C., Di Renzo, F., Robitzer, M., Barakat, A., Quignard, F. Reactive organosolv lignin extraction from wheat straw: influence of Lewis acid catalysts on structural and chemical properties of lignins. Ind. Crop. Prod. 2015, 65, 180-189.
Cox, B.J., Ekerdt, J.G., Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour. Technol. 2012, 118, 584-588.
Cox, B.J., Jia, S., Zhang, Z.C., Ekerdt, J.G. Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: Hammett acidity and anion effects. Polym. Degrad. Stabil. 2011, 96, 426-431.
Custodis, V. B. F., Bährle, C., Vogel, F., van Bokhoven, J. A. Phenols and aromatics from fast pyrolysis of variously prepared lignins from hard- and softwoods. J. Anal. Appl. 2015, 115, 214-223.
da Costa Lopes, A.M., Joao, K.G., Rubik, D.F., Bogel-Lukasik, E., Duarte, L.C., Andreaus, J., Bogel-Lukasik, R. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour. Technol. 2013, 142, 198-208.
da Silva, C.G., Grelier, S., Pichavant, F., Frollini, E., Castellan, A. Adding value to lignins isolated from sugarcane bagasse and Miscanthus. Ind. Crop. Prod. 2013, 42, 87-95.
Davis, K., Rover, M., Brown, R., Bai, X., Wen, Z., Jarboe, L. Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 2016, 9(10), 808.
Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 113-120.
De Gregorio, G., Prado, R., Vriamont, C., Erdocia, X., Labidi, J., Hallett, J. P., Welton, T. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain. Chem. Eng. 2016, 4, 6031−6036.
de Oliveira Santos, R.P., Rodrigues, B.V.M., Santos, D.M.D., Campana-Filho, S.P., Ruvolo-Filho, A.C., Frollini, E. Electrospun recycled PET-based mats: tuning the properties by addition of cellulose and/or lignin. Polymer Testing 2017, 60, 422-431.
Deepa, A.K., Dhepe, P.L. Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal. 2015, 5, 365-379.
Demirbas, A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ. Convers. Manage. 2000, 41, 633-646.
Deuss, P. J., Barta, K. From models to lignin: transition metal catalysis for selective bond cleavage reactions. Coord. Chem. Rev. 2016, 306, 510-532.
Dimmel, D. Lignin and lignans: Advances in chemistry, ed. Heitner, C., Dimmel, D. R., Schmidt, J. A. CRC Press- Taylor & Francis Group 2010, pp. 1–10.
Diop, A., Jradi, K., Daneault, C., Montplaisir, D. Kraft lignin depolymerization in an ionic liquid without a catalyst. BioResources 2015, 10, 4933-4946
Dong, S.-J., Zhang, B.-X., Gao, Y.-F., Hu, X.-M. An efficient process for pretreatment of lignocelluloses in functional ionic liquids, Int. J. Biol. Macromolec. 2015, 2015, 1-6.
Dorrestijn, E., Kranenburg, M., Poinsot, D., Mulder, P. “Lignin depolymerization in hydrogen-donor solvents.” Holzforschung 1999, 53(6), 611–616.
El Hage, R., Brosse, N., Sannigrahi, P., Ragauskas, A. Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym. Degrad. Stabil. 2010, 95, 997-1003.
Erdocia, X., Prado, R., Corcuera, M.Á., Labidi, J. Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenerg. 2014, 66, 379-386.
Fan, Y., Li, X., Yan, L., Li, J., Hua, S., Song, L., Wang, R., Sha, S. Enhanced extraction of antioxidants from aqueous solutions by ionic liquids. Sep. Purif. Technol. 2017, 172, 480-488.
Fang, D., Cheng, J., Gong, K., Shi, Q.-R., Zhou, X.-L., Liu, Z.-L. A green and novel procedure for the preparation of ionic liquid. J. Fluor. Chem. 2008, 129, 108-111.
Fang, R., Cheng, X., Xu, X. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour. Technol. 2010, 101, 7323-7329.
Fang, Z., Sato, T., Smith, R.L. Jr., Inomata, H., Arai, K., Kozinski, J.A. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour. Technol. 2008, 99, 3424-3430.
Faris, A.H., Rahim, A.A., Mohamad Ibrahim, M.N., Hussin, M.H., Alkurdi, A.M., Salehabadi, A. Investigation of oil palm based Kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives. Int J. Adhes. Adhes. 2017, 74, 115-122.
Fatehi, P., Gao, W., Sun, Y., Dashtban, M. Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process. Bioresour. Technol. 2016, 218, 518-525.
Feng, J., Jiang, J., Yang, Z., Su, Q., Wang, K., Xu, J. Characterization of depolymerized lignin and renewable phenolic compounds from liquefied waste biomass. RSC Adv. 2016, 6, 95698-95707.
Feng, Y., Meier, D. Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. J. Supercrit. Fluids. 2017, 128, 6-17.
Fernández-Rodríguez, J., Erdocia, X., Sánchez, C., González Alriols, M., Labidi, J. Lignin depolymerization for phenolic monomers production by sustainable processes. J. Energy Chem. 2017, 26(4), 622-631.
Fernández-Rodríguez, J., Gordobil, O., Robles, E., González-Alriols, M., Labidi, J. Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. J. Clean. Prod. 2017, 142, 2609-2617.
Fischer, L., Falta, T., Koellensperger, G., Stojanovic, A., Kogelnig, D., Galanski, M., Krachler, R., Keppler, B.K.,; Hann, S. Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res. 2011, 45, , 4601-4614.
Frei, M. Lignin: Characterization of a multifaceted crop component. The Scientific World Journal 2013, 2013, 436517.
Fu, D., Farag, S., Chaouki, J., Jessop, P. G. Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour. Technol. 2014, 154, 101-108.
Fu, D., Mazza, G., Tamaki, Y. Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J.. Agric. Food. Chem. 2010, 58 (5), 2915-22.
Gabov, K., Gosselink, R.J., Smeds, A.I., Fardim, P. Characterization of lignin extracted from birch wood by a modified hydrotropic process, J. Agric. Food. Chem. 2014, 62, 10759-10767.
García-Mateos, F.J., Cordero-Lanzac, T., Berenguer, R., Morallón, E., Cazorla-Amorós, D., Rodríguez-Mirasol, J., Cordero, T. Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation. Appl. Catal. B. Environ. 2017, 211, 18-30.
George, A., Tran, K., Morgan, T.J., Benke, P.I., Berrueco, C., Lorente, E., Wu, B.C., Keasling, J.D., Simmons, B.A., Holmes, B.M., The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem. 2011, 13, 3375-3385.
Ghaffar, S.H., Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenerg. 2013, 57, 264-279.
Giudicianni, P., Cardone, G., Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. J. Anal. Appl. Pyrolysis 2013, 100, 213-222.
Glas, D., Van Doorslaer, C., Depuydt, D., Liebner, F., Rosenau, T., Binnemans, K., De Vos, D.E. Lignin solubility in non-imidazolium ionic liquids. J. Chemical Technol. Biotechnol. 2015, 90, 1821-1826.
Goldmann, W.M., Ahola, J., Mikola, M., Tanskanen, J. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust. Bioresour. Technol. 2017, 232, 176-182.
González-García, S., Teresa Moreira, M., Artal, G., Maldonado, L., Feijoo, G., Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J. Clean. Prod. 2010, 18(2), 137-145.
Gordobil, O., Egüés, I., Labidi, J. Modification of eucalyptus and spruce organosolv lignins with fatty acids to use as filler in PLA. React. Funct. Polym. 2016, 104, 45-52.
Goudarzi, A., Lin, L.-T., Ko, F.K. X-Ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. J. Nanotechnol. Eng. Medicine 2014, 5, 021006.
Guan, Y., Qi, X.M., Chen, G.G., Peng, F., Sun, R.C. Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydr. Polym. 2016, 153, 542-548.
Guo, Z., Olsson, L. Characterization and fermentation of side streams from sulfite pulping. Process Biochem. 2014, 49(8), 1231-1237.
Gupta, B. S., Taha, M., Lee, M. J. Extraction of an active enzyme by self-buffering ionic liquids: a green medium for enzymatic research. RSC Adv. 2016, 6, 18567–18576.
Güvenatam, B., Heeres, E.H.J., Pidko, E.A., Hensen, E.J.M. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catal. Today 2016, 259, 460-466.
Güvenatam, B., Heeres, E. H. J., Pidko, E. A., Hensen, E. J. M. Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures. Catal. Today 2016, 269, 9-20
Hambardzumyan, A., Molinari, M., Dumelie, N., Foulon, L., Habrant, A., Chabbert, B., Aguie-Beghin, V. Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites. C. R. Biol. 2011, 334, 839-850.
Hart, W.E.S., Harper, J.B., Aldous, L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 2015, 17, 214-218.
Hepditch, M. M., Thring, R. W. Degradation of solvolysis lignin using Lewis acid catalysts. Can. J. Chem. Eng. 2000, 78, 266–231.
Hidajat, M.J., Riaz, A., Park, J., Insyani, R., Verma, D., Kim, J. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem. Eng. J. 2017, 317, 9-19.
Huang, X., Atay, C., Korányi, T.I., Boot, M.D., Hensen, E.J.M. Role of Cu–Mg–Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catal. 2015, 5(12), 7359-7370.
Huber, G. W., Iborra, S., Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044-4098.
Jacquemin, J., Anouti, M., Lemordant, D. Physico-chemical properties of non-newtonian shear thickening diisopropyl-ethylammonium-based protic ionic liquids and their mixtures with water and acetonitrile. J. Chem. Eng. Data 2011, 56, 556–564.
Jason M. Nichols., Lee M. Bishop., Robert G. Bergman., and Jonathan A. Ellman. Catalytic C−O bond cleavage of 2-Aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 2010, 132, 12554–12555.
Jia, S., Cox, B.J., Guo, X., Zhang, Z.C., Ekerdt, J.G. Cleaving the beta--O--4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. ChemSusChem. 2010, 3, 1078-1084.
Jung, S.-J., Kim, S.-H., Chung, I.-M., Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenerg. 2015, 83, 322-327.
Kang, S., Xiao, L., Meng, L., Zhang, X., Sun, R. Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. Int. J. Mol. Sci. 2012, 13, 15209-15226.
Karimi, K., Taherzadeh, M.J. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour. Technol. 2016, 200, 1008-1018.
Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T. Base-catalyzed depolymerization of biorefinery lignins. ACS Sustain. Chem. Eng. 2016, 4(3), 1474-1486.
Kim, J.Y., Oh, S., Hwang, H., Cho, T.S., Choi, I.G., Choi, J.W. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Chemosphere 2013, 93(9), 1755-1764.
Kim, J.-Y., Park, J., Hwang, H., Kim, J.K., Song, I.K., Choi, J.W. Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. J. Anal. Appl. Pyrolysis 2015, 113, 99-106.
Kim, J.Y., Shin, E.J., Eom, I.Y., Won, K., Kim, Y.H., Choi, D., Choi, I.G., Choi, J.W. Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour. Technol. 2011, 102, 9020-9025.
Kim, M., Son, D., Choi, J.-W., Jae, J., Suh, D.J., Ha, J.-M., Lee, K.-Y. Production of phenolic hydrocarbons using catalytic depolymerization of empty fruit bunch (EFB)-derived organosolv lignin on Hβ-supported Ru. Chem. Eng. J. 2017, 309, 187-196.
Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115(21), 11559-11624.
Li, H.Y., Wang, C.Z., Chen, X., Cao, X.F., Sun, S.N., Sun, R.C. Structural elucidation of Eucalyptus lignin and its dynamic changes in the cell walls during an integrated process of ionic liquids and successive alkali treatments. Bioresour. Technol. 2016, 222, 175-181.
Li, J., Henriksson, G., Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 2007, 98, 3061-3068.
Li, Y., Fan, H., Yu, X., Zhang, S., Li, G. Hemicellulose in corn straw: Extracted from alkali solution and produced 5-hydroxymethyl furfural in HCOOH/HCOONa buffer solution. Chin. J. Chem. Eng. 2016, 24(12), 1786-1792.
Li, Y., Cai, Z., Liao, M., Long, J., Zhao, W., Chen, Y., Li, X. Catalytic depolymerization of organosolv sugarcane bagasse lignin in cooperative ionic liquid pairs. Catal. Today 2017, 298, 168-174.
Lin, Q., Li, H., Ren, J., Deng, A., Li, W., Liu, C., Sun, R. Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: optimization by response surface methodology. Carbohydr. Polym. 2017, 157, 214-225.
Liu, F., Liu, Q., Wang, A., Zhang, T. Direct catalytic hydrogenolysis of kraft lignin to phenols in choline-derived ionic liquids. ACS Sustain. Chem. Eng. 2016, 4(7), 3850-3856.
Liu, Z., Meng, L., Chen, J., Cao, Y., Wang, Z., Ren, H. The utilization of soybean straw III: Isolation and characterization of lignin from soybean straw, Biomass Bioenerg. 2016, 94, 12-20.
Long, J., Xu, Y., Wang, T., Yuan, Z., Shu, R., Zhang, Q., Ma, L. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appl. Energy 2015, 141, 70-79.
Long, J., Shu, R., Yuan, Z., Wang, T., Xu, Y., Zhang, X., Zhang, Q., Ma, L. Efficient valorization of lignin depolymerization products in the present of NixMg1−xO. Appl. Energy 2015, 157, 540-545.
Lopez-Sanchez, P., Martinez-Sanz, M., Bonilla, M.R., Wang, D. Gilbert, E. P., Stokes, J.R., Gidley, M.J. Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly. Carbohydr. Polym. 2017, 162, 71-81.
Luong, N.D., Binh, N.T.T., Duong, L.D., Kim, D.O., Kim, D.S., Lee, S.H., Kim, B.J., Lee, Y.S., Nam, J.D. An eco-friendly and efficient route of lignin-based copolyester synthesis. Polym. Bull. 2012, 68, 879–890.
Ma, H.-H., Zhang, B.-X., Zhang, P., Li, S., Gao, Y.-F., Hu, X.-M. An efficient process for lignin extraction and enzymatic hydrolysis of corn stalk by pyrrolidonium ionic liquids. Fuel Process Technol. 2016, 148, 138-145.
Ma, J., Hong, X. Application of ionic liquids in organic pollutants control. J. Environ Manage 2012, 99, 104-109.
Ma, J.F., Yang, H.Y., Kun, W., Liu, X.E. Structural modification of hemicelluloses and lignin based on the biorefinery process with white-rot fungal. Carbohydr. Polym. 2016, 153, 7-13.
Ma, Q., Liu, Q., Li, W., Ma, L., Wang, J., Liu, M., Zhang, Q. Catalytic depolymerization of lignin for liquefied fuel at mild condition by rare earth metals loading on CNT. Fuel Process. Technol. 2017, 161, 220-225.
Ma, X., Tian, Y., Hao, W., Ma, R., Li, Y. Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst. Appl. Catal., A. General 2014, 481, 64-70.
Mahmood, N., Yuan, Z., Schmidt, J., Xu, C. Hydrolytic depolymerization of hydrolysis lignin: effects of catalysts and solvents. Bioresour. Technol. 2015, 190, 416-419.
Mahmood, N., Yuan, Z., Schmidt, J., Xu, C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review, Renew. Sust. Energ. Rev. 2016, 60, 317-329.
Miazek, K., Remacle, C., Richel, A., Goffin, D. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour. Technol. 2017, 230, 122-131.
Miles-Barrett, D. M., Neal, A. R., Hand, C., Montgomery, J. R. D., Panovic, I., Ojo, O. S., Lancefield, C. S., Cordes, D. B., Slawin, A. M. Z., Lebl, T., Westwood, N. J. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins. Org. Biomol. Chem. 2016, 14, 10023-10030.
Moghaddam, L., Zhang, Z., Wellard, R.M., Bartley, J.P., O'Hara, I.M., Doherty, W.O.S. Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass and Bioenerg. 2014, 70, 498-512.
Mohtar, S.S., Tengku Malim Busu, T.N.Z., Md Noor, A.M., Shaari, N., Mat, H. An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr. Polym. 2017, 166, 291-299.
Mohtar, S.S., Tengku Malim Busu, T.N., Noor, A.M., Md Shaari, N., Yusoff, N. A., Bustam Khalil, M.A., Abdul Mutalib, M.I., Mat, H.B. Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresour. Technol. 2015, 192, 212-218.
Monti, D., Egiziano, E., Burgalassi, S., Chetoni, P., Chiappe, C., Sanzone, A., Tampucci, S. Ionic liquids as potential enhancers for transdermal drug delivery. Int. J. Pharm. 2017, 516 (1-2), 45-51.
Nanayakkara, S., Patti, A.F., Saito, K. Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 2014a, 16, 1897-1903.
Nanayakkara, S., Patti, A.F., Saito, K. Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sustain. Chem. Eng. 2014b, 2, 2159-2164.
Nasser, R.A., Hiziroglu, S., Abdel-Aal, M.A., Al-Mefarrej, H.A., Shetta, N.D., Aref, I.M. Measurement of some properties of pulp and paper made from date palm midribs and wheat straw by soda-AQ pulping process. Measurement 2015, 62, 179-186.
Nichols, J. M., Bishop, L. M., Bergman, R. G., Ellman, J. A. Catalytic C−O Bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers. J. Am. Chem. Soc. 2010, 132, 12554–12555.
Ogunsile, B.O., Bamgboye, M.O. Biosorption of Lead (II) onto soda lignin gels extracted from Nypa fruiticans. J. Environ. Chem. Eng. 2017, 5 (3), 2708-2717.
Opris, C., Cojocaru, B., Gheorghe, N., Tudorache, M., Coman S.M., Parvulescu, V.I. Duraki, B., Krumeich, F., van Bokhoven, J.A. Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts. J. Catal. 2016, 339, 209-227.
Ouyang, X., Ruan, T., Qiu, X. Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Process. Technol. 2016, 144, 181-185.
Palamae, S., Dechatiwongse, P., Choorit, W., Chisti, Y., Prasertsan, P. Cellulose and hemicellulose recovery from oil palm empty fruit bunch (EFB) fibers and production of sugars from the fibers. Carbohydr. Polym. 2017, 155, 491-497.
Pandey, M.P., Kim, C.S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 2011, 34(1) 29-41.
Park, S.-Y., Hong, C.-Y., Jeong, H.-S., Lee, S.-Y., Choi, J.W., Choi, I.-G. Improvement of lignin oil properties by combination of organic solvents and formic acid during supercritical depolymerization. J. Anal. Appl. Pyrolysis 2016, 121, 113-120.
Pineda, A., Lee, A.F. Heterogeneously catalyzed lignin depolymerization. Appl. Petrochem. Res. 2016, 6, 243-256.
Platzer, S., Kar, M., Leyma, R., Chib, S., Roller, A., Jirsa, F., Krachler, R., MacFarlane, D.R., Kandioller, W., Keppler, B.K. Task-specific thioglycolate ionic liquids for heavy metal extraction: synthesis, extraction efficacies and recycling properties. J. Hazard. Mater. 2017, 324, 241-249.
Poletto, M., Zattera, A.J., Forte, M.M., Santana, R.M. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour. Technol. 2012, 109, 148-153.
Prado, R., Erdocia, X., De Gregorio, G.F., Labidi, J., Welton, T. Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustain. Chem. Eng. 2016a, 4, 5277-5288.
Prado, R., Erdocia, X., Labidi, J. Study of the influence of reutilization ionic liquid on lignin extraction. J Clean. Prod. 2016b, 111, 125-132.
Roopan, S.M. An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. Int. J. Biol. Macromolec. 2017, 103, 508-514.
Saarinen, N.M., Warri, A., Airio, M., Smeds, A., Makela, S. Role of dietary lignans in the reduction of breast cancer risk. Mol. Nutr. Food. Res. 2007, 51, 857-866.
Saisu, M., Sato, T., Watanabe, M., Adschiri, T., Arai, K. Conversion of lignin with supercritical water-phenol mixtures. Energy. Fuel 2003, 17, 922-928.
Salminen, E., Rujana, L., Mäki-Arvela, P., Virtanen, P., Salmi, T., Mikkola, J.-P. Biomass to value added chemicals: isomerisation of β-pinene oxide over supported ionic liquid catalysts (SILCAs) containing Lewis acids. Catal. Today. 2015, 257, 318-321.
Scarlat, N., Dallemand, J.-F., Monforti-Ferrario F., Nita, V. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 2015, 15, 3-34.
Sette, M., Lange, H., Crestini, C. Quantitative HSQC analyses of lignin: a practical comparison. Comput. Struct. Biotechnol. J. 2013, 6, e201303016.
Shen, X.-J., Wang, B., Pan-li, H., Wen, J.-L., Sun, R.-C. Understanding the structural changes and depolymerization of Eucalyptus lignin under mild conditions in aqueous AlCl3. RSC. Adv. 2016, 6(51), 45315-45325.
Shi, Y., Yan, X., Li, Q., Wang, X., liu, M., Xie, S., Chai, L., Yuan, J. Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem. 2017, 52, 238-242.
Shu, R., Long, J., Yuan, Z., Zhang, Q., Wang, T., Wang, C., Ma, L. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. Bioresour. technol. 2015, 179, 84-90.
Singh, S. K., Nandeshwar, K., Ekhe, J. D. Thermochemical lignin depolymerization and conversion to aromatics in subcritical methanol: effects of catalytic conditions. New J. Chem. 2016, 40 (4), 3677-3685.
Singh, S.K., Dhepe, P.L. Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR. Green Chem. 2016, 18(14) 4098-4108.
Sobhana, S.S.L., Zhang, X., Kesavan, L., Liias, P., Fardim, P. Layered double hydroxide interfaced stearic acid – Cellulose fibres: a new class of super-hydrophobic hybrid materials. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 416-424.
Song, Q., Wang, F., Xu, J. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. commun. 2012, 48, 7019-7021.
Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H., Rogers, R.D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009, 11, 646–655.
Sun, Y.-C., Xu, J.-K., Xu, F., Sun, R.-C. Efficient separation and physico-chemical characterization of lignin from eucalyptus using ionic liquid–organic solvent and alkaline ethanol solvent. Ind. Crop. Prod. 2013, 47, 277-285.
Taflick, T., Schwendler, L.A., Rosa, S.M., Bica, C.I., Nachtigall, S.M. Cellulose nanocrystals from acacia bark-Influence of solvent extraction. Int. J. Biol. Macromolec. 2017, 101, 553-561.
Tan, S.S.Y., MacFarlane, D.R., Upfal, J., Edye, L.A., Doherty, W.O.S., Patti, A.F., Pringle, J.M., Scott, J.L. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem. 2009, 11, 339.
Tarasov, D., Leitch, M., Fatehi, P. Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Process. Technol. 2017, 158, 146-153.
To, T.Q., Shah, K., Tremain, P., Simmons, B.A., Moghtaderi, B., Atkin, R. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel 2017, 202, 296-306.
Toledano, A., Serrano, L., and Labidi, J. Organosolv lignin depolymerization with different base catalysts. J. Chem. Technol. Biotechnol 2012, 87, 1593–1599.
Toledano, A., Serrano, L., Labidi, J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 2014, 116, 617– 624.
Tu, W. W., Lei, J. P., Ju, H. X. Functionalization of carbon nanotubes with water soluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem. Eur. J. 2009, 15, 779–784.
Vancov, T., Alston, A.-S., Brown, T., McIntosh, S. Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy 2012, 45, 1-6.
Vivas, N., Nonier, M.-F., Pianet, I., Vivas de Gaulejac, N., Fouquet, É. Structure of extracted lignins from oak heartwood (Quercus petraea Liebl., Q. Robur L.), Comptes Rendus Chimie 2006, 9, 1221-1233.
Wahyudiono, M., Sasaki, M., Goto, Recovery of phenolic compounds through the decomposition of lignin in near and supercritical water. Chem. Eng. Process. Process Intensification 2008, 47(9-10) 1609-1619.
Wang, W. L., Ren, X. Y., Chang, J. M., Cai, L. P., Shi, S. Q. Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides. Fuel Process Technol. 2015, 138, 605-611.
Wang, X., Li, H., Cao, Y., Tang, Q. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (Amimcl). Bioresour.Technol. 2011, 102, 7959–7965.
Wang, Y., Wei, L., Li, K., Ma, Y., Ma, N., Ding, S., Wang, L., Zhao, D., Yan, B., Wan, W., Zhang, Q., Wang, X., Wang, J., Li, H. Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures. Bioresour. Technol. 2014, 170, 499-505.
Wanmolee, W., Daorattanachai, P., Laosiripojana, N. Depolymerization of organosolv lignin to valuable chemicals over homogeneous and heterogeneous acid catalysts. Energy Procedia 2016, 100, 173-177.
Weerachanchai, P., Lee, J.-M. Recovery of lignin and ionic liquid by using organic solvents. J. Ind. Eng. Chem. 2017, 49 122-132.
Wen, J.-L., Yuan, T.-Q., Sun, S.-L., Xu, F., Sun, R.-C. Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chem. 2014, 16(1) 181-190.
Wilkes, J., Properties of ionic liquid solvents for catalysis. J. Mol. Catal A. Chem. 2004, 214 (1), 11-17.
Wu, M., Pang, J., Zhang, X., Sun, R. Enhancement of lignin biopolymer isolation from hybrid poplar by organosolv pretreatments. Int. J. Polym. Sci. 2014, 2014, 1-10.
Wu, Q.-y., Ma, L.-l., Long, J.-x., Shu, R.-y., Zhang, Q., Wang, T.-j., Xu, Y., Depolymerization of organosolv lignin over silica-alumina catalysts. Chin. J. Chem. Phys. 2016, 29(4) 474-480.
Xu, C., Arancon, R.A., Labidi, J., Luque, R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem. Soc rev. 2014, 43, 7485-7500.
Xu, F., Zhu, T.T., Rao, Q.Q., Shui, S.W., Li, W.W., He, H.B., Yao, R.S. Fabrication of mesoporous lignin-based biosorbent from rice straw and its application for heavy-metal-ion removal. J. Environ. Sci. 2017, 53, 132-140.
Xu, H., Xiong, H. Y., Zeng, Q. X., Jia, L., Wang, Y., Wang, S. F. Direct electrochemistry and elctrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids. Electrochem. Commun. 2009, 11, 286–289.
Xu, J., Liu, B., Hou, H., Hu, J. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery. Bioresour. Technol. 2017, 234, 406-414.
Xu, J., Hou, H., Liu, B., Hu, J. The integration of different pretreatments and ionic liquid processing of eucalyptus: hemicellulosic products and regenerated cellulose fibers. Ind. Crop. Prod. 2017, 101, 11-20.
Xue, B. L., Huang, P. L., Sun, Y.C., Lia, X. P., Sun, R. C. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis, RSC Adv. 2017, 7, 6123–6130.
Yan, B., Li, K., Wei, L., Ma, Y., Shao, G., Zhao, D., Wan, W., Song, L. Understanding lignin treatment in dialkylimidazolium-based ionic liquid-water mixtures. Bioresour. Technol. 2015, 196, 509-517.
Yoo, C.G., Pu, Y., Ragauskas, A.J. Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr. Opinion Green Sustain. Chem. 2017, 5, 5-11.
Yoshikawa, T., Shinohara, S., Yagi, T., Ryumon, N., Nakasaka, Y., Tago, T., Masuda, T. Production of phenols from lignin-derived slurry liquid using iron oxide catalyst. Appl. Catal. B. Environ. 2014, 146, 289-297.
Zakrzewska, M.E., Bogel-Łukasik, E., Bogel-Łukasik, R. Solubility of carbohydrates in ionic liquids. Energ. Fuel 2010, 24, 737-745.
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599.
Zeng, J., Tong, Z., Wang, L., Zhu, J.Y., Ingram, L. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis. Bioresour. Technol. 2014, 154,) 274-281.
Zhang, C., Zhu, L., Wang, J., Wang, J., Zhou, T., Xu, Y., Cheng, C. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2017, 140, 235-240.
Zhang, H., Wu, S., Xie, J. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose. Enzyme Microb. Technol. 2017, 101, 44-50.
Zhang, J., Deng, H., Lin, L., Sun, Y., Pan, C., Liu, S. Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour. Technol. 2010, 101, 2311-2316.
Zhang, P., Dong, S.-J., Ma, H.-H., Zhang, B.-X., Wang, Y.-F., Hu, X.-M. Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids, Ind. Crop. Prod. 2015, 76, 688-696.
Zhang, Z., Song, J., Han, B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 2016, 117, 6834−6880.
Zhao, C., Lercher, J.A. The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. Elsevier Science, 2013, pp. 289-320.
Zhao, X., Tong, T., Li, H., Lu, H., Ren, J., Zhang, A., Deng, X., Chen, X., Wu, A.M. Characterization of hemicelluloses from Neolamarckia cadamba (Rubiaceae) during xylogenesis. Carbohydr. Polym. 2017, 156, 333-339.
Zikeli, F., Ters, T., Fackler, K., Srebotnik, E., Li, J. Wheat straw lignin fractionation and characterization as lignin-carbohydrate complexes. Ind. Crop. Prod. 2016, 85, 309-317.

無法下載圖示 全文公開日期 2023/01/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE