簡易檢索 / 詳目顯示

研究生: Dean Tirkaamiana
Dean Tirkaamiana
論文名稱: 整合遺傳演算法與布穀鳥搜索最佳化法為基礎之嵌套長短期記憶法於電力預測
Integration of Genetic Algorithm and Cuckoo Search Optimizer-Based Nested Long Short-Term Memory for Electricity Forecasting
指導教授: 郭人介
Ren-Jieh Kuo
口試委員: 歐陽超
Chao Ou-Yang
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 預測嵌套長短期記憶注意機制基因演算法布穀鳥搜索優化器
外文關鍵詞: Forecasting, Nested long-short term memory, Attention mechanism, Genetic algorithm, Cuckoo search optimizer
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期對大多數產業而言,獲得電力是一個非常重要的議題,如製造業、服務業、政府或農業等。由於使用不可再生資源發電,全球碳排放正在增加,然而,雖不可再生能源是一個解決方案,但因其可變性和不確定性,這種能源的發展並不顯著,這足以顯示出需求預測的重要性,供給應該更加精確,以避免過度使用能源。有幾種方法可以用於電力預測,長短期記憶模型(long-short term memory; LSTM)是一種有機會的演算法。 LSTM被延伸開發為嵌套LSTM(nested long-short term memory; NLSTM),它擁有LSTM所不具備的優勢。此外,注意力機制(attention mechanism; AM)已被證明可以提高深度學習的性能,因此本研究將NLSTM與AM結合以進行預測。由於有一些參數可能會影響網絡的性能,本研究採用萬用演算法來尋找合適的參數,整合基因演算法(genetic algorithm; GA)和布穀鳥搜索優化器(cuckoo search optimizer; CSO),稱為基因CSO,並應用它來確定NLSTM-AM參數,以達到更好的網絡結構。為了評估所提出的算法的性能,本研究使用兩個數據集在均方根誤差(root mean squared error; RMSE)與一些現有演算法進行了比較。計算結果顯示,本研究所提出的演算法可以有較低的RMSE。此外,GA和CSO的整合確實能夠超過GA或CSO的單獨表現。


    Recently, acquiring electricity has become a very important issue for most of sectors such as manufacturing, service, government, or agricultural. Due to electricity generation by non-renewable source, global emission is getting to increase. Non-renewable energy source is the solution, but the development of this energy is not significance especially due to its variability and uncertainty. This issue is enough to force the importance of demand forecasting and the supply should be more precise and to avoid the excessive usage of energy source. There are several methods for electricity forecasting and long-short term memory (LSTM) is one of promising algorithms. One of LSTM variants was developed as nested LSTM (NLSTM) which owns the advantages that LSTM does not have. In addition, attention mechanism (AM) which has been proved can enhance deep learning performance. Thus, the current study intends to combine NLSTM with AM for forecasting. However, there are some parameters which may influence the network performance. Therefore, metaheuristic is employed to find the suitable parameters. Thus, this study integrates genetic algorithm (GA) and cuckoo search optimizer (CSO) called as genetic CSO and applies it to determine the NLSTM-AM parameters in order to reach better network structure. In order to assess the proposed algorithm’s performance, it is compared with some existing algorithms using two datasets in terms of root mean squared error (RMSE). The computational results show that the proposed algorithm can have lower RMSE. Besides, integration of GA and CSO really can outperform GA or CSO individually.

    摘要 I ABSTRACT II ACKNOWLEDGMENT III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VII CHAPTER 1 1 1.1 Research Background 1 1.2 Research Objective 4 1.3 Research Limitations 4 1.4 Thesis Organization 4 CHAPTER 2 6 2.1 Power Forecasting 6 2.2 Recurrent Neural Network 7 2.3 Development of LSTM 9 2.3.1 Original LSTM 10 2.3.2 Deep/Vanilla LSTM 11 2.3.3 Nested LSTM 13 2.4 Hybrid LSTM 14 2.5 Attention Mechanism 16 2.6 Genetic Algorithm 18 2.7 Cuckoo Search Optimizer 19 CHAPTER 3 22 3.1 Data Collection 22 3.2. Data Preprocessing 24 3.3 The Proposed Forecasting Algorithm 24 3.3.1 NLSTM-Attention Mechanism 25 3.3.2 Genetic CSO 34 CHAPTER 4 39 4.1 Data Collection 39 4.2. Data Pre-processing 39 4.3 Parameter Setup 40 4.4 Results 42 4.4.1 Taipower Dataset 43 4.4.2 EXIST Dataset 48 4.5 Statistical test 52 4.5.1 Normality test 53 4.5.2 Wilcoxon Signed Rank Test 54 CHAPTER 5 56 5.1 Conclusions 56 5.2 Contributions 57 5.3 Future Research 57 References 58

    Abdallah, L., & El-Shennawy, T. (2013). Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications. Journal of Engineering, 2013, 1–8. https://doi.org/10.1155/2013/84505
    Agga, A., Abbou, A., Labbadi, M., Houm, Y. E., & Ali, I. H. (2022). CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electric Power Systems Research, 208.
    Armaroli, N., & Balzani, V. (2011). Towards an electricity-powered world. Energy & Environmental Science, 4(9), 3193.
    Bianco, V., Manca, O., & Nardini, S. (2008). Electricity consumption forecasting in Italy using linear regression models. Energy, 1413-1421.
    Billa, J. (2018). Dropout Approaches for LSTM Based Speech Recognition Systems. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5879–5883.
    Bottieau, J. V. (2018). Leveraging provision of frequency regulation services from wind generation by improving day-ahead predictions using LSTM neural networks. IEEE International Energy Conference, 1-6.
    Cai, Y., & Ma, X. (2021). Anovel ensemble learning-based grey model for electricity supply forecasting in China. AIMS Mathematics, 12339-12358.
    Casas, I. (2020). International Encyclopedia of Human Geography . Amsterdam: Elsevier.
    Cheng, J., Dong, L., & Lapata, M. (2016). Long Short-Term Memory-Networks for Machine Reading.
    Chih-Chung Chang, & Chih-Jen Lin. (2001). LIBSVM -- A Library for Support Vector Machines.
    Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
    DiPietro, R. H. (2020). Handbook of Medical Image Computing and Computer Assisted Intervention. Cambridge: Academic Press.
    Dincer, I., & Abu-Rayash, A. (2020). Energy sources. In Energy Sustainability (pp. 19–58). Elsevier.
    Du, B., Huang, S., Guo, J., Tang, H., Wang, L., & Zhou, S. (2022). Interval forecasting for urban water demand using PSO optimized KDE distribution and LSTM neural networks. Applied Soft Computing, 122.
    Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., & Sun, Z. (2021). Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 220.
    Fister, I., Yang, X.-S., Fister, D., & Fister, I. (2014). Cuckoo Search: A Brief Literature Review (pp. 49–62).
    Fotios Petropoulos, D. A. (2022). Forecasting: theory and practice. International Journal of Forecasting, 705-871.
    Funahashi, K., & Nakamura, Y. (1993). Approximation of dynamical systems by continous networks. Neura Netw, 801-806.
    Gao, X., & Li, W. (2021). A graph-based LSTM model for PM2.5 forecasting. Atmospheric Pollution Research, 12(9).
    Gasparotto, J., & da Boit Martinello, K. (2021). Coal as an energy source and its impacts on human health. Energy Geoscience, 2(2), 113–120.
    Gers, F. A. (1999). Learning to Forget: Continual Prediction with LSTM. Ninth International Conference on Artificial Neural Networks, 850-855.
    Gers, F. A. (2000). Recurrent nets that time and count. Proceedings of The International Joint Conference on Neural Networks, 189 - 194.
    Ghaffarian, S., Valente, J., Voortand, M. v., & Tekinerdogan, B. (2021). Effect of attention mechanism in deep learning-based remote sensing image processing: A systematic literature review. Remote Sensing, 13.
    Ghalehkhondabi, I., Ardjmand, E., Weckman, G. R., & Young, W. A. (2017). An overview of energy demand forecasting methods published in 2005–2015. Energy Systems, 8(2), 411–447.
    Ghosh, T. K., Das, S., Barman, S., & Goswami, R. (2016). A Comparison Between Genetic Algorithm and Cuckoo Search Algorithm to Minimize the Makespan for Grid Job Scheduling. Advances in Computational Intelligence, 141-147.
    Graves, A. &. (2013). Speech recognition with deep recurrent neural network. Proc. IEEE Int. Conf. Acoust., Speech Signal Procress, 94441-94452.
    Graves, A., & J., S. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 602-610.
    Graves, A., Jaitly, N., & Mohamed, A. R. (2013). Hybrid speech recognition with deep bidirectional LSTM . Proceeding of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 273-278.
    Hochreiter, S. &. (1997). Long Short-term Memory. Neural Computation, 1735-1780.
    Holland JH, R. J. (1978). Pattern-directed inference systems. Academin Press, 313-29.
    Holland, J. H. (1975). Adaption in Natural and Artificial Systems an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge: MIT Press.
    Hyndman, R. J., & Anthanasopoulos, G. (2018). Forecasting; Principles and Practice.
    Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(3).
    Jain, M., Saihjpal, V., Singh, N., & Singh, S. B. (2022). An Overview of Variants and Advancements of PSO Algorithm. Applied Sciences, 12(17), 8392.
    Janiesch, C. Z. (2021). Machine learning and deep learning. Electron Markets 31, 685–695.
    Jin, N., Zeng, Y., Yan, K., & Ji, Z. (2021). Multivariate Air Quality Forecasting With Nested Long Short Term Memory Neural Network. IEEE Transactions on Industrial Informatics, 8514-8522.
    Joshi, A., Kulkarni, O., Kakandikar, G., & Nandedkar, V. (2017). Cuckoo Search Optimization- A Review. Materials Today: Proceedings, 7262-7269.
    Karevan, Z., & Suykens, J. A. K. (2018). Spatio-temporal Stacked LSTM for Temperature Prediction in Weather Forecasting.
    Khan, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev, 5455-5516.
    Khalil, A., Shabaka, I., & Elsafty, A. (2018). Modified models and database for calculating cooling degree-days for the egyptian climates.
    Khare, V., Khare, C., Nema, S., & Baredar, P. (2019). Introduction to Energy Sources. In Tidal Energy Systems (pp. 1–39). Elsevier.
    Kılıç, F. (2022). Forecasting the Electricity Capacity and Electricity Generation Values of Wind &Solar Energy with Artificial Neural Networks Approach: The Case of Germany. Applied Artificial Intelligence, 36(1).
    Kumar, M., Husain, M., Upreti, N., & Gupta, D. (2010). Genetic Algorithm: Review and Application. SSRN Electronic Journal.
    Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., & Adormaa, B. (2018). Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research and Reports, 17(6), 1–9.
    Li, X., Han, C., Lu, G., & Yan, Y. (2021). Online dynamic prediction of potassium concentration in biomass fuels through flame spectroscopic analysis and recurrent neural network modelling. Fuel.
    Liang, X. S. (2016). Semantic object parsing with parsingwith. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3185-3193.
    Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective Approaches to Attention-based Neural Machine Translation. Computer Science. doi:arXiv:1508.04025v5
    Mahia, F., Dey, A. R., Masud, M. A., & Mahmud, M. S. (2019). Forecasting Electricity Consumption using ARIMA Model. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), 1–6.
    Mateus, B. C., Mendes, M., Farinha, J. T., Assis, R., & Cardoso, A. M. (2021). Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press. Energies, 14(21), 6958.
    McCauley, D. (2018). Global Energy Justice. In Energy Justice (pp. 1–26). Springer International Publishing.
    Meller, B. M. (2020). Image classification with feed-forward neural networks. CEUR Workshop Proceedings.
    Mitchell, M. (1998). An Introduction to Genetic Algorithms. United Kingdom: MIT Press.
    Moniz, J. R., & Krueger, D. (2017). Nsted LSTMs. J. Mach. Lern. Res, 248-255.
    Muzrat, S. (2006). A brief review of feed-forward neural networks. Communications, Faculty of Science, University of Ankara, 11-17.
    Nadimi, R., & Tokimatsu, K. (2017). Analyzing of Renewable and Non-Renewable Energy consumption via Bayesian Inference. Energy Procedia, 142, 2773–2778.
    Nasirtafreshi, I. (2021). Forecasting cryptocurrency prices using Recurrent Neural Network. Data & Knowledge Engineering.
    Nasr, M. B., & Chtourou, M. (2012). Training recurrent neural networks using a hybrid algorithm. Neural Computing and Applications.
    Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 48-62.
    Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. Journal of King Saud University – Computer and Information Sciences, 2098 - 2117.
    Pan, Cheng & Tan, Jie & Feng, Dandan & Li, Yi. (2019). Very Short-Term Solar Generation Forecasting Based on LSTM with Temporal Attention Mechanism. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE, 267-271.
    Pang, Z., Niu, F., & O’Neill, Z. (2020). Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renewable Energy, 279-289.
    Pang, Z., Niu, F., & O'Neill, Z. (2020). Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renewable Energy, 279-289.
    Pannakkong, W., Harncharnchai, T., & Buddhakulsomsiri, J. (2022). Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models. Energies, 15(9), 3105.
    Pavicevic, M., & Popovic, T. (2021). Forecasting Day-Ahead Electricity Price with Artificial Neural Networks: a Comparison of Architectures. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 1083–1088.
    Park, Y. S., & Lek, S. (2016). Developments in Environmental Modelling. Amsterdam: Elsevier.
    Prado, F., Minutolo, M. C., & Kristjanpoller, W. (2020). Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system-Neural network - Genetic Algorithm Framework. Energy, 197, 117159.
    Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., de Baets, S., Dokumentov, A., … Ziel, F. (2022b). Forecasting: theory and practice. International Journal of Forecasting, 38(3), 705–871.
    Ran X, Shan Z, Fang Y, Lin C. An LSTM-Based Method with Attention Mechanism for Travel Time Prediction. Sensors (Basel). 2019 Feb 19;19(4):861. doi: 10.3390/s19040861. PMID: 30791424; PMCID: PMC6412727.
    Saad, W., & Taleb, A. (2018). The causal relationship between renewable energy consumption and economic growth: evidence from Europe. Clean Technologies and Environmental Policy, 20(1), 127–136.
    Sainath, T. N. (2015). Convolutional, long short-term memory, fully connected deep neural networks. International Conference on Acoustics, Speech and Signal Processing, 4580-4584.
    Xiaorui, Shao & Pu, Chen & Zhang, Yuxin & Kim, Chang. (2020). Domain fusion CNN-LSTM for short-term power consumption forecasting. IEEE Access. 8. 188352-188362.
    Xie, J., Zhang, J., Yu, J., & Xu, L. (2020). An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geoscience and Remote Sensing Letter, 17(5), 740-744.
    Schuster, M. &. (1997). Bidirectional recurrent neural networks. Signal Processing, IEEE Transactions, 602-610.
    Selvan, R. S., & Dr.K.Arutchelvan. (2021). Improved Cuckoo Search Optimization Algorithm based Multi-document Summarization Model . Proceedings of the Fifth International Conference on Computing Methodologies and Communication, 735-739.
    Sharma, D. K. (2022). Deep Learning for Medical Applications with Unique Data. Cambridge: Academic Press.
    Shi, X., Chen, Z., Wang, H., Woo, W. C., Woo, W. C., & Woo, W. C. (2015). Convolutional LSTM Network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 802-810.
    Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computer Science.
    Steinbuks, J., de Wit, J., Kochnakyan, A., & Foster, V. (2017). Forecasting electricity demand : An did for practitioners. LiveWire, 73.
    ThuNguyen, T. H., & BaoPhan, Q. (2022). Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization. Energy Reports, 53-60.
    Valian, E., Mohanna, S., & Tavakoli, S. (2011). Improved Cuckoo Search Algorithm for Feedforward Neural Network Training. International Journal of Artificial Intelligence & Applications, 2.
    Verzijlbergh, R. A., de Vries, L. J., Dijkema, G. P. J., & Herder, P. M. (2017). Institutional challenges caused by the integration of renewable energy sources in the European electricity sector. Renewable and Sustainable Energy Reviews, 75, 660–667.
    Walczak, S. &. (2003). Encyclopedia of Physical Science and Technology (Third Edition). Cambridge: Academic Press.
    Wang, J., Peng, B., & Zhang, X. (2018). Using a stacked residual LSTM model for sentiment intensity. Neurocomputing 322, 93-101.
    Weng, F., Zhang, H., & Yang, C. (2021). Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic. Resources Policy.
    Whitley, D. (1998). A genetic algorithm tutorial, Stat. Comput. Statistic and Computing, 55–85,.
    Wu, F., Cattani, C., Song, W., & Zio, E. (2020). Fractional ARIMA with an improved cuckoo search optimization for the efficient Short-term power load forecasting. Alexandria Engineering Journal.
    Wuest, T., Irgens, C., & Thoben, K.-D. (2013). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 1167-1180.
    Xayasouk, T., Lee, H., & Lee, G. (2020). Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models. Sustainability, 12(6), 2570.
    Yan, K., Zhou, X., & JinjunChen. (2022). Collaborative deep learning framework on IoT data with bidirectional NLSTM neural networks for energy consumption forecasting. Journal ofParallel and Distributed Computing 163, 248-255.
    Yang, X.-S., & Karamanoglu, M. (2020). Nature-inspired computation and swarm intelligence: a state-of-the-art overview. In Nature-Inspired Computation and Swarm Intelligence (pp. 3–18). Elsevier.
    Yang, X. S. (2010). Nature-Inspired Metaheuristic Algorithms, 2nd Edition. United Kingdom: Luniver Press.
    Yang, X.-S. (2014). Analysis of Algorithms. In Nature-Inspired Optimization Algorithms (pp. 23–44). Elsevier.
    Yang, X.-S., & Suash Deb. (2009). Cuckoo Search Optimization- A Review. IEEE, 210-214.
    Yu, C., Qi, X., Ma, H., He, X., Wang, C., & Zhao, Y. (2020). LLR: Learning learning rates by LSTM for training neural networks. Neurocomputing, 394, 41–50.
    Zeng, Y., Chen, J., Jin, N., Jin, X., & Du, Y. (2022). Air quality forecasting with hybrid LSTM and extended stationary. Building and Environment, 108822.
    Zhang Q., Z. J. (2020). A Novel Fault Diagnosis Method based on Stacked LSTM. IFAC-PapersOnLine, 790-795.
    Zhang, L., Yu, Y., Luo, Y., & Zhang, S. (2020). Improved cuckoo search algorithm and its application to permutation flow shop scheduling problem. Journal of Algorithms & Computational Technology, 1-12.

    無法下載圖示 全文公開日期 2026/01/04 (校內網路)
    全文公開日期 2033/01/04 (校外網路)
    全文公開日期 2043/01/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE