簡易檢索 / 詳目顯示

研究生: 李旭哲
HSU-CHE LI
論文名稱: 鰭片尺寸對鰭式場效電晶體特性之影響
Effects of Fin Dimension on FinFET Characteristics
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 徐世祥
Shih-Hsiang Hsu
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 45
中文關鍵詞: 鰭式場效電晶體短通道效應鰭片尺寸
外文關鍵詞: FinFET, Short Channel Effects, Fin Dimension
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於鰭式場效電晶體(Fin Field Effect Transistors, FinFET)元件具有三面環繞閘極之設計結構,可以比傳統金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)元件有更強的閘極對通道之控制能力,因此可以抑制短通道效應(Short Channel Effects, SCEs)所造成之漏電流。雖然FinFET為三面環繞閘極元件,但隨著鰭片尺寸改變,每一面閘極對通道控制的能力也會發生變化,因此當尺寸增加,此時元件不全然是三閘極結構,有可能會構成三閘極與雙閘極所組成之元件結構,最終使得漏電流的途徑發生改變,因此必需仔細考量元件尺寸設計,要能同時兼顧元件高驅動電流與低漏電電流之特性。
本論文透過Synopsys TCAD對鰭式場效電晶體進行電性模擬分析,其中特別討論元件尺寸對奈米尺度電晶體特性之影響,並研究閘極長度小於10 nm之FinFET。研究表明,在閘極長度10 nm、鰭片寬度5 nm、鰭片高度30 nm之下,當汲極偏壓1V,且閘極偏壓1V時,可獲得導通電流18.4 µA;而在閘極偏壓0V時,漏電流為1.2 pA。


Because Fin Field Effect Transistors (FinFET) devices have a three-side gate design structure, it can provide more gate’s controllability than traditional Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) devices. Therefore, the leakage current which caused by short-channel effects (SCEs), FinFET has lower than MOSFET. Although the FinFET is a three-sided surround gate element, as the size of the fin changes, the ability of the gate on each side to control the channel will also change. Therefore, when the size increases, the device is not entirely a triple-gate structure and it may form a device structure composed of triple-gate and double-gate. Finally, the current path of leakage current would be changed. It is necessary to carefully consider the size of the device design and to consider the characteristics of high drive current and low leakage current of the device.
This thesis uses Synopsys TCAD to simulate a three-dimensional electrical simulation analysis of FinFET. The relationship between fin dimension size and leakage characteristics is the focus of the simulation and studies FinFET with gate lengths less than 10 nm. Studies have shown that when the gate length, fin width and fin height are set to 10 nm, 5 nm and 30 nm, respectively. When the drain bias voltage is 1V and the gate bias voltage is 1V, the on-current is 18.4 µA; moreover, when the bias voltage is 0V, the leakage current is 1.2 pA.

摘要 i Abstract ii Acknowledgment iii Content iv List of Figures v List of Tables vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Overview of Device 1 1.2.1 Overview of MOSFET 2 1.2.2 Overview of FinFET 3 1.2.3 Overview of Stacked Channel FinFET 4 1.3 Device physical mechanism 5 1.3.1 Short-channel effects 5 1.3.2 Drain-Induced Barrier Lowering 6 1.4 TCAD simulation setup 8 Chapter 2 Device fabrication 9 2.1 FinFET fabrication 9 Chapter 3 Results and discussion 11 3.1 The effects of fin dimension on FinFET 11 3.1.1 The effects of fin width on FinFET characteristics 12 3.1.2 The effects of fin height on FinFET characteristics 16 3.1.3 The effects of gate length on FinFET characteristics 20 3.1.4 The effects of S/D extension on FinFET characteristics 28 3.2 The effects of fin dimension on Stacked Channel FinFET 32 Chapter 4 Conclusions 36

[1] A. Malinowski et al, "Electrical characterization of FinFETS," 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 65-69, 2008.
[2] A. Gill, C. Madhu and P. Kaur, "Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology," 2015 Annual IEEE India Conference (INDICON), pp. 1-4, 2015.
[3] M. G. Bardon et al., "Dimensioning for power and performance under 10nm: The limits of FinFETs scaling," 2015 International Conference on IC Design & Technology (ICICDT), pp. 1-4, 2015.
[4] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Education Publishing Company, 2012.
[5] S. K. Dargar and V. M. Srivastava, "Performance Analysis of 10 nm FinFET with Scaled Fin-Dimension and Oxide Thickness," 2019 International Conference on Automation, Computational and Technology Management (ICACTM), pp. 1-5, 2019.
[6] N. Arora, Mosfet Modeling for VLSI Simulation: Theory And Practice, 2007, p. 197.
[7] E. P. Vandamme, P. Jansen and L. Deferm, "Modeling the subthreshold swing in MOSFET's," IEEE Electron Device Letters, pp. 369-371, Aug 1997.
[8] Simon M. Sze and Ming-Kwei Lee, in Semiconductor Devices: Physics and Technology, 3rd Edition, May 2012.
[9] H. E. Ghitani, “DIBL coefficient in short-channel NMOS transistors,” Proceedings of the Sixteenth National Radio Science Conference. NRSC'99 (IEEE Cat. No.99EX249), pp. D4/1-D4/5, 1999.
[10] K. Lee, R. He, H. Huang, C. Yeh, I. Li and O. Cheng, "A study of fin width effect on the performance of FinFET," 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 503-504, 2015.
[11] N. Kaur, M. Rattan and S. S. Gill, “Impact of gate oxide thickness and aspect ratio of fin height and fin width on nanoscale tapered FinFETs,” 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1787-1791, 2016.
[12] Park J, Kim J, Showdhury S, Shin C, Rhee H, Yeo MS, Cho E-C, Yi J, "Electrical Characteristics of Bulk FinFET According to Spacer Length," Electronics, p. 1283, 9 2020.
[13] Bin Yu et al., "FinFET scaling to 10 nm gate length," Digest. International Electron Devices Meeting, pp. 251-254, 2002.
[14] J. Kedzierski et al, “Extension and source/drain design for high-performance FinFET devices,” IEEE Transactions on Electron Devices, pp. 952-958, April 2003.
[15] P. Zheng, D. Connelly, F. Ding and T. K. Liu, “Inserted-oxide FinFET (iFinFET) design to extend CMOS scaling,” 2015 International Symposium on VLSI Technology, Systems and Applications, pp. 1-2, 2015.

無法下載圖示 全文公開日期 2024/06/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE