簡易檢索 / 詳目顯示

研究生: 曾莉雯
Li-Wen Tseng
論文名稱: 人因設計運動型緊身服飾對運動過程生理反應之影響
The Effect of Ergonomic Designed Compression Garment on Physiological Response During and After Exercise
指導教授: 許維君
Wei-Chun Hsu
口試委員: 劉強
Chiang Liu
詹貴惠
Kuei-Hui Chan
許昕
Hsin Hsiu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 81
中文關鍵詞: 跑步經濟性運動緊身衣心肺測試
外文關鍵詞: running economy, sports compression garments, cardio-respiratory testing
相關次數: 點閱:247下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於長距離跑步運動過程中生理適應上必需要減少耗能,延緩疲勞發生。本研究目的在於驗證休閒型跑者,穿著人因設計運動型緊身服飾後,於運動中及運動後生理反應之影響。本研究招募受試者八名,平均最大攝氧為48.88 ± 3 ml/min/kg之年輕受試者,穿著人因設計運動緊身服飾(D-CG)、一般緊身(G-CG)及無緊身(N-CG),以75% 最大攝氧量各別完成三種不同服飾之跑步生理測試。三套服飾在第40分鐘的跑步經濟性有顯著差異(P = 0.03)。人因設計緊身衣,相較於無緊身服於跑步20分鐘起的各時間點一直到跑步過程結束,攝氧量有顯著下降。而一般緊身相較於無緊身服於跑步僅於第25及40分鐘顯著下降(P<0.05)。然而,在心肺測試亦無在機能衣功效上看出顯著差異。在運動過程中,心肺測試ヽ血乳酸ヽ運動自覺強度於穿著不同服裝之測試條件下,均無反應出顯著差異。在運動後恢復時期,肌酸激酶ヽ肌紅蛋白或主觀酸痛量感亦無衣著之間的顯著差異。綜合上論,穿著人因設計運動服飾,可能有助於次高強度運動表現,其效果於20分鐘後開始有促進跑步經濟性。然而,一般緊身卻無法產生一致效應。因此,穿著人因設計運動服飾可能有助於次高強度跑步中促進氧氣利用效率,減少能量消耗,而且較一般緊身對提升氧氣利用效率效益更為顯著,但對於恢復效益未有顯著效益被證實。


Physiological adaptions are essential for distance running in which the performance is highly associated with minimizing metabolic energy expenditure and fatigue resistance. The purpose of this study was to investigate the effects of wearing ergonomic designed sport compressive garment (D-CG) and general compression garment (G-CG) on physiological response during and after exercise in recreational runners. Eight male recreational runners (aged 26.13 ± 2.36 years old and V ̇O2max of 48.88 ± 3 ml/min/kg) were recruited. All participates were assigned to wear G-CG, D-CG, and nearly nude (non-CG) to perform a 40 minutes 75% V ̇O2max treadmill run. The main effect between three CG conditions in running economy at the 40-minute of running (P =0.03). Significantly lower V ̇O2 (L/min) P <0.05 the time points after 20 of exercise were found between D-CG and N-CG (P <0.05). Compared to N-CG, wearing D-CG showed lower oxygen consumption at all the time points after 20 minutes running. Compared to N-CG, G-CG showed lower oxygen consumption at the time points of 25 and at the end of 40 minutes running course. However, there were no differences in cardio-respiratory response including cardiac output (Q ̇), stroke volume (SV) and Oxygen pulse (V ̇O2/HR). There was no difference in lactate and rating of perceived exertion among D-CG, G-CG, and N-CG prior to or post running trial. In recovery phase, there no significant difference in CK, Mb or VAS. These results suggest that wearing D-CG might enhance oxygen utilization and thus the performance in recreational runner after 20 minute submaximal running; however G-CG revealed no pronounce effect. Conclusion: This finding suggest that wearing D-CG is likely to enhance submaximal running after 20 minute running; besides, indicating that wearing D-CG were more consistent than wearing G-CG.

TABLE OF CONTENTS 中文摘要............................................................................1 ABSTRACT............................................................................4 ACKNOWLEDGMENTS.....................................................................4 LIST OF TABLES......................................................................8 LIST OF FIGURES.....................................................................9 CHAPTER I: Introduction...........................................................10 1.1 Overview the effect of sports compression garments.........................10 1.2 The concepts and features of ergonomic designed CG.........................12 1.3 Approaching to the problems................................................13 CHAPTER II: Background and Literature Review.......................................15 2.1 Overview the effect of sports compression garments.........................15 2.2 Oxygen consumption.........................................................16 2.3 Cardio-respiratory performance............................................17 2.4 Accumulation of blood lactate..............................................19 2.5 Clearance of muscle damage markers.........................................19 2.6 Subjective Perceptions.....................................................21 CHAPTER III: METHODOLOGY...........................................................23 3.1 Subjects...................................................................23 3.2 Experimental instrument....................................................24 3.2.1 H/P/cosmos mercuryR med treadmill system...........................24 3.2.2 Polar T31 Coded Chest Transmitter and Heart Rate Monitor...........24 3.2.3 Cortex Metalyzer Metabolic System..................................25 3.2.4 EKF Diagnostics glucose and lactate analyzer.......................25 3.2.5 Fuji Dri-Chem 4000i automatic analyzer.............................26 3.3 Experimental Procedure.....................................................27 3.3.1 V O2max test.......................................................28 3.3.2 Fix-load running trail.............................................29 3.3.3 Blood Sampling of blood lactate....................................30 3.3.4 Blood Sampling of muscle damage markers............................30 3.3.5 Perception Measurements............................................31 3.4 Experimental Variables.....................................................31 3.4.1 Oxygen consumption.................................................31 3.4.2 Heart rate (Maximal Heart Rate)....................................32 3.4.3 Cardiac Output.....................................................32 3.4.4 Stroke Volume (SV).................................................33 3.4.5 Oxygen pulse.......................................................34 3.4.6 Creatine kinase activity...........................................34 3.4.7 Myoglobin concentration............................................35 3.4.8 Rating of perceived exertion.......................................36 3.4.9 Perceived soreness.................................................36 3.5 Statistical Analysis.......................................................37 CHAPTER IV: RESULTS................................................................39 4.1 Running Economy............................................................43 4.2 Accumulation of blood lactate..............................................54 4.3 Clearance of muscle damage markers.........................................57 4.4 Subjective Perceptions.....................................................61 CHAPTER V: Conclusion..............................................................65 REFERENCES.........................................................................66 Appendix...........................................................................73 LIST OF TABLES Table 3.1 Physical characteristics of the subjects..............................................................................23 Table 4.1.1 Physical characteristics of the subjects.............................................................................40 Table 4.1.2 Individual maximal oxygen uptake......................................................................................40 Table 4.2.1 Running Economy and %VO2 max base on D-CG, G-CG and N-CG measured by 5 minutes intervals during 40 minutes 75% VO2max running..................................................................................45 Table 4.2.2 Comparison of oxygen consumption in D-CG and N-CG, and G-CG and N-CG measured by 5 minutes intervals during 40 minutes 75% VO2max running........................................................................48 Table 4.3.1 Cardio-respiratory performance on each D-CG, G-CG and N-CG condition measured at rest, AT, and VO2 max during 40 minutes 75% VO2max running..........................................................................53 Table 4.6.1 Creatine kinase and myoglobin measured before and following the running trial for three CG conditions.................58 Table 4.6.2 Creatine kinase and myoglobin measured before and following the running trial for three CG conditions.................59 Table 4.6.1 RPE measured each 10 minutes during running trial for three CG conditions.............................................63 LIST OF FIGURES Figure 1.2 (a) the front view (b) the back views of lower body CG................................................................13 Figure 3.2.1 H/P/cosmos mercuryR med treadmill system..............................................................................24 Figure 3.2.2 Polar T31 Coded Chest Transmitter and Heart Rate Monitor..............................................................24 Figure 3.2.3 Cortex Metalyzer Metabolic System.....................................................................................25 Figure 3.2.4 EKF Diagnostics glucose and lactate analyzer..........................................................................26 Figure 3.2.5 Fuji Dri-Chem 4000i automatic analyze.................................................................................26 Figure 3.3.1 flow chart of experimental procedure..................................................................................27 Figure 3.3.2 Oxygen uptake relative to exercise intensity..........................................................................29 Figure 3.4.8 Borg rating of perceived exertion scale...............................................................................36 Figure 3.4.9 visual analogue scale.................................................................................................37 Figure 4.1.1 Individual maximal oxygen uptake-1....................................................................................41 Figure 4.1.2 Individual maximal oxygen uptake-2....................................................................................42 Figure 4.2.3 the comparison of three CG conditions at each time point..............................................................51 Figure 4.5.1 Lactic acid accumulation..............................................................................................56 Figure 4.6.1 CK activity among three clothes type in the 6 time points of pre and post running trials..............................60 Figure 4.5.2 Myoglobin concentration among three clothes type in the 6 time points of pre and post running trial...................61 Figure 4.6.2 VAS score of major muscle groups......................................................................................64

Ali, A., Caine, M., & Snow, B. (2007). Graduated compression stockings: physiological and perceptual responses during and after exercise. Journal of sports sciences, 25(4), 413-419.
Ali, A., Creasy, R. H., & Edge, J. A. (2010). Physiological effects of wearing graduated compression stockings during running. European Journal of Applied Physiology, 109(6), 1017-1025.
Ali, A., Creasy, R. H., & Edge, J. A. (2011). The effect of graduated compression stockings on running performance. The Journal of Strength & Conditioning Research, 25(5), 1385-1392.
Antonacci, L., Mortimer, L., Rodrigues, V., Coelho, D., Soares, D., & Silami-Garcia, E. (2007). Competition, estimated, and test maximum heart rate. Journal of Sports Medicine and Physical Fitness, The, 47(4), 418.
Appell, H.-J., Soares, J., & Duarte, J. (1992). Exercise, muscle damage and fatigue. Sports Medicine, 13(2), 108-115.
Armstrong, L. (2006). ACSM's guidelines for exercise testing and prescription/American College of: Lippincott Williams & Wilkins, Philadelphia.
Assumpcao, C. d. O., Lima, L. C. R., Oliveira, F. B. D., Greco, C. C., & Denadai, B. S. (2013). Exercise-induced muscle damage and running economy in humans. The Scientific World Journal, 2013.
Barnes, K. R., McGuigan, M. R., & Kilding, A. E. (2013). Lower Body Determinants of Running Economy in Male and Female Distance Runners. Journal of Strength & Conditioning Research.
Bassett, D., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and science in sports and exercise, 32(1), 70-84.
Belluye, N. (2006). Aerobic energy cost and sensation responses during submaximal running exercise–positive effects of wearing compression tights. Int J Sports Med, 27(5), 373-378.
Bergh, U., Sjodin, B., Forsberg, A., & Svedenhag, J. (1991). The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc, 23(2), 205-211.
Berry, M. J., & McMurray, R. G. (1987). Effects of graduated compression stockings on blood lactate following an exhaustive bout of exercise. American Journal of Physical Medicine & Rehabilitation, 66(3), 121-132.
Bijur, P. E., Silver, W., & Gallagher, E. J. (2001). Reliability of the visual analog scale for measurement of acute pain. Academic emergency medicine, 8(12), 1153-1157.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Med sci sports exerc, 14(5), 377-381.
Born, D. P., Sperlich, B., & Holmberg, H. C. (2013). Bringing light into the dark: effects of compression clothing on performance and recovery. International Journal of Sports Physiology and Performance, 8(1), 4-18.
Braun, W. A., & Dutto, D. J. (2003). The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. European journal of applied physiology, 90(1-2), 29-34.
Bringard, A., Denis, R., Belluye, N., & Perrey, S. (2006). Effects of compression tights on calf muscle oxygenation and venous pooling during quiet resting in supine and standing positions. Journal of sports medicine and physical fitness, 46(4), 548.
Bringard, A., Perrey, S., & Belluye, N. (2006). Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights. International Journal of Sports Medicine, 27(5), 373-378.
Christensen, C. C., Frey, H. M., Foenstelien, E., Aadland, E., & Refsum, H. E. (1983). A critical evaluation of energy expenditure estimates based on individual O2 consumption/heart rate curves and average daily heart rate. The American journal of clinical nutrition, 37(3), 468-472.
Christie, J., Sheldahl, L., Tristani, F., Sagar, K., Ptacin, M., & Wann, S. (1987). Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 76(3), 539-547.
Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and science in sports and exercise, 24(5), 512-520.
Clarkson, P. M., & Sayers, S. P. (1999). Etiology of exercise-induced muscle damage. Canadian journal of applied physiology, 24(3), 234-248.
Cochrane, D. J. (2004). Alternating hot and cold water immersion for athlete recovery: a review. Physical Therapy in Sport, 5(1), 26-32.
Doan, B., Kwon, Y.-H., Newton, R., Shim, J., Popper, E. V. A., Rogers, R., . . . Kraemer, W. (2003). Evaluation of a lower-body compression garment. Journal of sports sciences, 21(8), 601-610.
Duffield, R., Cannon, J., & King, M. (2010). The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. Journal of Science and Medicine in Sport, 13(1), 136-140.
Duffield, R., & Portus, M. (2007). Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. British Journal of Sports Medicine, 41(7), 409-414.
Dutto, D. J., & Braun, W. A. (2004). DOMS-associated changes in ankle and knee joint dynamics during running. Med Sci Sports Exerc, 36(4), 560-566.
Farr, T., Nottle, C., Nosaka, K., & Sacco, P. (2002). The effects of therapeutic massage on delayed onset muscle soreness and muscle function following downhill walking. Journal of Science and Medicine in Sport, 5(4), 297-306.
Felty, C. L., & Rooke, T. W. (2005). Compression therapy for chronic venous insufficiency. Paper presented at the Seminars in vascular surgery.
Ferrauti, A., Bergermann, M., & Fernandez-Fernandez, J. (2010). Effects of a Concurrent Strength and Endurance Training on Running Performance and Running Economy in Recreational Marathon Runners. Journal of Strength & Conditioning Research October, 24(10), 2770-2778.
Ferri, A., Adamo, S., La Torre, A., Marzorati, M., Bishop, D. J., & Miserocchi, G. (2012). Determinants of performance in 1,500-m runners. European journal of applied physiology, 112(8), 3033-3043.
Friden, J., & Lieber, R. (2001). Serum creatine kinase level is a poor predictor of muscle function after injury. Scandinavian journal of medicine & science in sports, 11(2), 126-127.
Goh, S. S., Laursen, P. B., Dascombe, B., & Nosaka, K. (2011). Effect of lower body compression garments on submaximal and maximal running performance in cold (10 C) and hot (32 C) environments. European Journal of Applied Physiology, 111(5), 819-826.
Griffin, J. W., Newsome, L. S., Stralka, S. W., & Wright, P. E. (1990). Reduction of chronic posttraumatic hand edema: a comparison of high voltage pulsed current, intermittent pneumatic compression, and placebo treatments. Physical therapy, 70(5), 279-286.
Griffiths, P. (1966). Serum levels of ATP: creatine phosphotransferase (creatine kinase). The normal range and effect of muscular activity. Clinica Chimica Acta, 13(4), 413-420.
Hamaoka, T., Iwane, H., Shimomitsu, T., Katsumura, T., Murase, N., Nishio, S., . . . Chance, B. (1996). Noninvasive measures of oxidative metabolism on working human muscles by near-infrared spectroscopy. Journal of Applied Physiology, 81(3), 1410-1417.
Hamlin, M. J., Mitchell, C. J., Ward, F. D., Draper, N., Shearman, J. P., & Kimber, N. E. (2012). Effect of compression garments on short-term recovery of repeated sprint and 3-km running performance in rugby union players. The Journal of Strength & Conditioning Research, 26(11), 2975-2982.
Hill, J., Howatson, G., Van Someren, K., Leeder, J., & Pedlar, C. (2013). Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. British journal of sports medicine.
Ibegbuna, V., Delis, K. T., Nicolaides, A. N., & Aina, O. (2003). Effect of elastic compression stockings on venous hemodynamics during walking. Journal of vascular surgery, 37(2), 420-425.
Ishii, J., Wang, J.-h., Naruse, H., Taga, S., Kinoshita, M., Kurokawa, H., . . . Nagamura, Y. (1997). Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clinical chemistry, 43(8), 1372-1378.
Jakeman, J. R., Byrne, C., & Eston, R. G. (2010). Efficacy of lower limb compression and combined treatment of manual massage and lower limb compression on symptoms of exercise-induced muscle damage in women. The Journal of Strength & Conditioning Research, 24(11), 3157-3165. doi: 10.1519/JSC.0b013e3181e4f80c
Jakeman, J. R., Byrne, C., & Eston, R. G. (2010). Lower limb compression garment improves recovery from exercise-induced muscle damage in young, active females. European Journal of Applied Physiology, 109(6), 1137-1144.
Jones, A. M. (1998). A five year physiological case study of an Olympic runner. British journal of sports medicine, 32(1), 39-43.
Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29(6), 373-386.
Kemmler, W., von Stengel, S., Kockritz, C., Mayhew, J., Wassermann, A., & Zapf, J. (2009). Effect of compression stockings on running performance in men runners. The Journal of Strength & Conditioning Research, 23(1), 101-105.
Koch, A., Pereira, R., & Machado, M. (2014). The creatine kinase response to resistance exercise. Journal of musculoskeletal & neuronal interactions, 14(1), 68-77.
Kraemer, W. J., Bush, J. A., Wickham, R. B., Denegar, C. R., Gomez, A. L., Gotshalk, L. A., . . . Sebastianelli, W. J. (2001). Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. Journal of Orthopaedic & Sports Physical Therapy, 31(6), 282-290.
Kraemer, W. J., Bush, J. A., Wickham, R. B., Denegar, C. R., Gomez, A. L., Gotshalk, L. A., . . . Putukian, M. (2001). Continuous compression as an effective therapeutic intervention in treating eccentric-exercise-induced muscle soreness. Journal of Sport Rehabilitation, 10(1), 11-23.
Lambert, S. (2010). Oxygen uptake recovery kinetics with hyperoxia and graduated compression garments in trained athletes. Journal of Science and Medicine in Sport, 12, Supplement 2(0), e67-e68. doi: http://dx.doi.org/10.1016/j.jsams.2009.10.139
Lambert, S., Dongas, F., Parsons, B., & Turner, G. (2006). The effect of graduated compression garments (Skins™) on perceived leg pain, leg power and alertness following elite AFL matches. Journal of Science and Medicine in Sport, 9, Supplement(0), 18. doi: http://dx.doi.org/10.1016/j.jsams.2006.12.038
Lavender, A. P., & Nosaka, K. (2006). Comparison between old and young men for changes in makers of muscle damage following voluntary eccentric exercise of the elbow flexors. Applied physiology, nutrition, and metabolism, 31(3), 218-225.
Lindstedt, S., & Conley, K. (2001). Human aerobic performance: too much ado about limits to VO2. Journal of Experimental Biology, 204(18), 3195-3199.
Lovell, D. I., Mason, D. G., Delphinus, E. M., & McLellan, C. P. (2011). Do compression garments enhance the active recovery process after high-intensity running? The Journal of Strength & Conditioning Research, 25(12), 3264-3268.
Lyle, M. A., Valero-Cuevas, F. J., Gregor, R. J., & Powers, C. M. (2013). Lower extremity dexterity is associated with agility in adolescent soccer athletes. Scand J Med Sci Sports. doi: 10.1111/sms.12162
MacRae, B. A., Laing, R. M., Niven, B. E., & Cotter, J. D. (2012). Pressure and coverage effects of sporting compression garments on cardiovascular function, thermoregulatory function, and exercise performance. European journal of applied physiology, 112(5), 1783-1795.
MacRae, M. B. A., Cotter, J. D., & Laing, R. M. (2011). Compression Garments and Exercise. Sports Medicine, 41(10), 815-843.
Malm, C., Sjodin, B., Sjoberg, B., Lenkei, R., Renstrom, P., Lundberg, I. E., & Ekblom, B. (2004). Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. The Journal of physiology, 556(3), 983-1000.
Mayberry, J. C., Moneta, G. L., De Frang, R. D., & Porter, J. M. (1991). The influence of elastic compression stockings on deep venous hemodynamics. Journal of vascular surgery, 13(1), 91-100.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2006). Essentials of exercise physiology: Lippincott Williams & Wilkins.
Meir, R. (2012). Training for and competing in sevens rugby: practical considerations from experience in the International Rugby Board World Series. Strength & Conditioning Journal, 34(4), 76-86.
Menetrier, A., Mourot, L., Bouhaddi, M., Regnard, J., & Tordi, N. (2011). Compression sleeves increase tissue oxygen saturation but not running performance. International Journal of Sports and Medicine, 32(11), 864-868.
Miyamoto, N., Hirata, K., Mitsukawa, N., Yanai, T., & Kawakami, Y. (2011). Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise. Journal of Electromyography and Kinesiology, 21(2), 249-254.
Morton, R. H. (2006). The critical power and related whole-body bioenergetic models. European journal of applied physiology, 96(4), 339-354.
Myburgh, K. H. (2003). What makes an endurance athlete world-class? Not simply a physiological conundrum. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136(1), 171-190.
Nosaka, K., Sakamoto, K., Newton, M., & Sacco, P. (2001). The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. European journal of applied physiology, 85(1-2), 34-40.
Ordway, G. A., & Garry, D. J. (2004). Myoglobin: an essential hemoprotein in striated muscle. Journal of Experimental Biology, 207(20), 3441-3446.
Osteras, H., Helgerud, J., & Hoff, J. (2002). Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. European journal of applied physiology, 88(3), 255-263.
Peake, J., Nosaka, K. K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans.
Perrey, S., Bringard, A., Racinais, S., Puchaux, K., & Belluye, N. (2008). Graduated compression stockings and delayed onset muscle soreness The Engineering of Sport (pp. 547-554): Springer Paris.
Privett, S. E., George, K. P., Whyte, G. P., & Cable, N. T. (2010). The effectiveness of compression garments and lower limb exercise on post-exercise blood pressure regulation in orthostatically intolerant athletes. Clinical Journal of Sport Medicine, 20(5), 362-367.
Proctor, D. N., Sinning, W. E., Walro, J., Sieck, G. C., & Lemon, P. (1995). Oxidative capacity of human muscle fiber types: effects of age and training status. Journal of Applied Physiology, 78(6), 2033-2038.
Pruscino, C. L., Halson, S., & Hargreaves, M. (2013). Effects of compression garments on recovery following intermittent exercise. European Journal of Applied Physiology, 1-12.
Rodeheffer, R. J., Gerstenblith, G., Becker, L., Fleg, J., Weisfeldt, M., & Lakatta, E. (1984). Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation, 69(2), 203-213.
Rowlands, D. S., Graham, D. F., Fink, P. W., Wadsworth, D. P., & Hughes, J. D. (2013). Effect of whole-body microtitanium-treated garments on metabolic cost of exercise following strenuous hill running. Journal of Science and Medicine in Sport.
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465-485.
Scanlan, A. T., Dascombe, B. J., Reaburn, P. R., & Osborne, M. (2008). The effects of wearing lower-body compression garments during endurance cycling. International Journal of Sports Physiology & Performance, 3(4).
Sear, J. A., Hoare, T. K., Scanlan, A. T., Abt, G. A., & Dascombe, B. J. (2010). The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. The Journal of Strength & Conditioning Research, 24(7), 1901-1910.
Sjodin, B., Jacobs, I., & Karlsson, J. (1981). Onset of Blood Lactate Accumulation and Enzyme Activities in M. Vastus Lateralis in Man. International journal of sports medicine, 02(03), 166-170. doi: 10.1055/s-2008-1034605
Sorichter, S., Mair, J., Koller, A., Calzolari, C., Huonker, M., Pau, B., & Puschendorf, B. (2001). Release of muscle proteins after downhill running in male and female subjects. Scandinavian journal of medicine & science in sports, 11(1), 28-32.
Sperlich, B., Born, D. P., Kaskinoro, K., Kalliokoski, K. K., & Laaksonen, M. S. (2013). Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise. PLoS One, 8(4). doi: 10.1371/journal.pone.0060923
Sperlich, B., Haegele, M., Achtzehn, S., Linville, J., Holmberg, H.-C., & Mester, J. (2010). Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes. Journal of sports sciences, 28(6), 609-614.
Sperlich, B., Haegele, M., Kruger, M., Schiffer, T., Holmberg, H.-C., & Mester, J. (2011). Cardio-respiratory and metabolic responses to different levels of compression during submaximal exercise. Phlebology, 26(3), 102-106.
Strath, S. J., Swartz, A. M., Bassett Jr, D. R., O'Brien, W. L., King, G. A., & Ainsworth, B. E. (2000). Evaluation of heart rate as a method for assessing moderate intensity physical activity. Medicine and Science in Sports and Exercise, 32(9 Suppl), S465-470.
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.
Varela-Sanz, A., Espana, J., Carr, N., Boullosa, D. A., & Esteve-Lanao, J. (2011). Effects of gradual-elastic compression stockings on running economy, kinematics, and performance in runners. The Journal of Strength & Conditioning Research, 25(10), 2902-2910.
Wadsworth, D. P., Walmsley, A., & Rowlands, D. S. (2010). Aquatitan garments extend joint range of motion without effect on run performance. Medicine and science in sports and exercise, 42(12), 2273-2281.
Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T., Kraft, T., & Stolz, M. (1998). Creatine kinase: an enzyme with a central role in cellular energy metabolism. Magnetic Resonance Materials in Physics, Biology and Medicine, 6(2), 116-119.
Yeh, T.-S., Chan, K.-H., Hsu, M.-C., & Liu, J.-F. (2011). Supplementation with soybean peptides, taurine, Pueraria isoflavone, and ginseng saponin complex improves endurance exercise capacity in humans. Journal of medicinal food, 14(3), 219-225.

無法下載圖示 全文公開日期 2019/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE