簡易檢索 / 詳目顯示

研究生: 阿里福
Arief - Noor Rahman
論文名稱: 數位控制之二次諧振槽LLC轉換器研製
Design and Implementation of Digitally Controlled Secondary-Side Resonant Tank LLC Converter
指導教授: 劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
口試委員: 謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 58
中文關鍵詞: 二次側諧振槽轉換器LLC數位控制器軟啟動控制器
外文關鍵詞: secondary-side resonant converter, LLC, digital controller, soft-start controller
相關次數: 點閱:224下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著電池電源的應用越來越普遍,高升壓型直流-直流轉換器引起了許多
研究人員的興趣。由於電池組輸出的電壓比起一般應用需求的電壓低了許多,
因此在電池應用的技術裡,高升壓比的直流-直流轉換器顯得非常重要。也就是
說,電池電壓需要被提升到更高的準位,以提供功率至負載。然而,隨著電池
的放電,電池電壓將會有很大的變動,這是電池應用技術上的一大挑戰。在本
論文中,提出一種次級側諧振槽 LLC 的架構,目的是要獲得 LLC 轉換器的高
效率及高電壓增益等優點。這種設計的主要優勢是,大電流的電路路徑長度可
以最小化,並降低諧振槽儲能元件的電流應力。本文架構的控制電路是以數位
控制器 TMS320F28035 所實現,其具有比例積分及軟啟動的控制法則,其中,
比例積分運算有助於調整輸出電壓,而軟啟動控制能讓電路在啟動瞬間避免過
大的湧入電流燒燬電路,且使得輸出電壓從零開始慢慢地升到設定好的目標準
位。最後,藉由一個 2 kW 的電路實體製作,在額定輸入電壓 36 至 72V 和輸出
電壓額定值為 410V 的實際測試中,驗證了本文的設計。


With the prosper applications of battery source power supplies, high step-up dcdc
converters currently draw lots of interest from many researchers. The high step up
dc-dc converter is important for battery application since the battery stack voltage for
general applications is much lower than the utility voltage. Therefore, the voltage
needs to be stepped up to a higher level to supply the load. Besides, there is another
challenge for battery applications, that is, the battery voltage varies widely as the
battery discharges. In this thesis, a secondary-side resonant tank LLC is proposed to
gain the advantage of LLC converters such as high-efficiency and wide variation of
voltage gain. The main advantage of this design is that the trace with high current is
minimized, and lower current stress for the resonant tank component. The controller
for the circuit was implemented on digital signal processor TMS320F28035 and
consisted of two control algorithm, PI controller to regulate the output voltage and
soft0-start controller to avoid excessive inrush current during star-up of the circuit by
slowly increase the output voltage slowly from zero to the desired output set point. In
the end of this thesis, a 2 kW laboratory prototype for input voltage from 36 V to 72 V
and output voltage rated at 410 V is designed and tested to verify the proposed design.

Table of Contents 摘要.........................................................................................................................................................II ABSTRACT ......................................................................................................................................... III TABLE OF CONTENTS .....................................................................................................................IV LIST OF FIGURES............................................................................................................................... V LIST OF TABLES..............................................................................................................................VII CHAPTER 1 BACKGROUND AND OBJECTIVES..........................................................................1 1.1 BACKGROUND AND THESIS OBJECTIVES .........................................................................................1 1.2 THESIS ORGANIZATION...................................................................................................................2 CHAPTER 2 LLC OPERATING PRINCIPLE AND DESIGN.........................................................3 2.1 OVERVIEW OF LLC CONVERTER.....................................................................................................3 2.2 PRINCIPLE OF OPERATION................................................................................................................3 2.3 MODES OF OPERATION FOR LLC CONVERTER ................................................................................5 2.4 FIRST HARMONIC APPROXIMATION (FHA) MODEL ........................................................................8 2.5 DESIGN FLOW OF LLC CONVERTER................................................................................................9 CHAPTER 3 DESIGN AND SIMULATION..................................................................................... 12 3.1 OVERVIEW OF SECONDARY SIDE RESONANT TANK LLC CONVERTER ......................................... 12 3.2 DESIGN FLOW OF SECONDARY SIDE RESONANT TANK LLC CONVERTER .................................... 13 3.3 CONTROLLER DESIGN ...................................................................................................................17 3.3.1 DSP Hardware Timer Module Initiation ..........................................................................17 3.3.2 Design of Output Voltage Controller................................................................................ 19 3.3.3 Design of Soft Start Controller......................................................................................... 20 3.3.4 Design of Output Controller and Integration with Soft Start Controller.......................... 20 3.4 DESIGN OF UVLO, OVLO, AND OVP PROTECTION......................................................................23 3.5 SIMULATION OF THE PROPOSED DESIGN .......................................................................................24 3.5.1 SIMPLIS simulation for Secondary Side Resonant Tank LLC Converter......................... 25 3.5.2 Controller simulation on PSIM......................................................................................... 29 CHAPTER 4 HARDWARE IMPLEMENTATION AND EXPERIMENTAL RESULTS ........... 34 4.1 HARDWARE DESIGNS AND IMPLEMENTATIONS ............................................................................. 34 4.2 EXPERIMENTAL RESULTS AND ANALYSIS ..................................................................................... 37 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS ................................................................47 5.1 CONCLUSIONS............................................................................................................................... 47 5.2 FUTURE WORKS............................................................................................................................47 REFERENCES ..................................................................................................................................... 48

REFERENCES
[1] Sam A. R., "Resonant LLC converter: operation and design," Infineon Technologies, Application Note AN 2012-19, 2012.
[2] F. L. Luo and H. Ye, "Positive output cascade boost converters," in IEE Proc. Electr. Power APpl., vol. 151, 2004, pp. 590-606.
[3] J. M. Kwon, E. H. Kim, B. H. Kwon, and K. H. Nam, "High efficiency fuel cell power conditioning system with input current ripple reduction," IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 826-834, Mar. 2009.
[4] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, "Novel high step-up DC-DC converter for fuel cell energy conversion system," IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, Jun. 2010.
[5] W. Chen, Z. Y. Lu, F. Zhang, and S. S. Ye, "A novel ZVS step-up push-pull type isolated LLC series resonant DC-DC converter for UPS system and its topology variation," in Proc. 23rd Annu. IEEE Appl. Power Electron. Conf. Expo., Feb. 2008, pp. 1073-1078.
[6] Haibing H., Xiang F., Frank C., Z. John S., and Issa B., "A modified high efficiency LLC converter with two transformer for wide input-voltage range application," IEEE Trans. Power Electron., vol. 20, no. 4, pp. 1946-1960, April 2013.
[7] Z. Liang, R. Guo, J. Wang, and A. Q. Huang, "A new wide input range high efficiency photovoltaic inverter," in Proc. IEEE Energy Conversion Congr. and Expos., 2010, pp. 2937-2943.
[8] Huang H., "Designing an LLC resonant half-bridge power converter," Texas Intruments, Power Supply Design Seminar SLUP263, 2010.
[9] S. D. Simone, C. Adragna, C. Spini, and G. Gattavari, "Design-oriented steady state analysis of LLC resonant converters based on FHA," in Proc. Int. Sump. Power Electron., Electr. Drives, Autom. Motion, 2006, pp. 16-23. 49
[10] H. Huang, "FHA-based voltage gain function with harmonic compensation for LLC resonant converter," in Proc. IEEE 25th Annu. Appl. Power Electron. Conf.Expo, 2010, pp. 1770-1777.
[11] Rubycon. Metallized polypropylene film capacitors MPH series. PDF.
[12] Y. Luo, B. Sun, R. Priegnitz, and Z. Ye, "Extraction of small signal characteristics and loop compensation of digitally controlled LLC resonant converter with period modulation," in Proc. IEEE Power Electron. Mach. Wind Appl., Sep. 2009, pp. 1-8.
[13] J. Espina, A. Arias, J. Balcells, C. Ortega, and S. Galceran, "Speed anti-windup PI strategies review for field oriented control of permanent magnet synchronous machines servo drives with matrix converters," in Power Electronics and Applications, 2009. EPE '09. 13th European Conference on, 2009, pp. vol., no., pp.1,8, 8-10 Sept. 2009.
[14] Microchip Technology, Inc. (2002) AN786 - Driving power mosfets in high current, switch mode regulators. PDF.
[15] Avago Technology. (2014) HCNR200 and HCNR201 High-linearity analog optocouplers. PDF.
[16] Texas Instruments. (2013, October) SPRS584J-Piccolo™ Microcontrollers. PDF.

QR CODE