簡易檢索 / 詳目顯示

研究生: 黃世惠
Shih-Hui Huang
論文名稱: 氧化釕奈米桿的電化學觸媒應用
Application of RuO2 Nanorods in Electrocatalyst
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
黃鶯聲
Ying-Sheng Huang
陳建忠
Chien-Chong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 氧化釕奈米桿電化學觸媒抗CO毒化
外文關鍵詞: RuO2 nanorods, electrocatalysts, CO tolerance
相關次數: 點閱:263下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討有機金屬化學氣相沉積垂直立於基材的氧化釕奈米桿(RuO2)陣列,經還原後為Ru/RuO2、(Ru,RuO2)及Ru奈米桿,電鍍Pt於Ru/RuO2、(Ru,RuO2)及Ru奈米桿製備成Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru觸媒,測試其氧化有機小分子的催化活性。
藉由SEM、XRD、XPS及拉曼光譜,可知氧化釕奈米桿於還原前後的結構、形貌及成分變化。利用循環伏安法測試Ru/RuO2、(Ru, RuO2)及Ru奈米桿與Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru在電化學觸媒上的特性,可知經還原後的奈米桿其電化學觸媒活性增加。此外,經還原的奈米桿在-0.2V∼0.9V(vs. Ag/AgCl)以循環伏安掃流多圈後,有Ru金屬溶解現象,此現象普遍存在於所有包含Ru金屬的電化學觸媒(PtRu)中。
討論Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru觸媒對甲醇、乙醇、甲酸、乙二醇與甲醯胺的氧化測試,並進一步瞭解其抗CO毒化作用。其中Pt/Ru(7.6nm)對甲醇氧化,在0.48V∼0.85V(vs. Ag/AgCl)較JM PtRu高出許多,但Ru的掃流上限電位至0.7V(vs. NHE)以上時,屬不可逆氧化還原反應,代表Ru會溶解,因此Pt/Ru(7.6nm)真正優勢約在0.48V∼0.5V(vs. Ag/AgCl),且其CO氧化峰電位為0.286V(vs. Ag/AgCl)(掃流速率10mV/s),與文獻值相當,表示其抗CO毒化效果佳。此外,Pt電鍍於還原後較小的釕晶粒尺寸上,對於氧化甲醇有很明顯的正面影響。

關鍵字:氧化釕奈米桿、電化學觸媒、抗CO毒化


We have explored the catalytic activities of Pt/Ru/RuO2, Pt/(Ru,RuO2), Pt/Ru derived from RuO2 nanorods in electrochemical oxidation of small organic molecules. The electrocatalyts were prepared by electrodepositing Pt on the Ru/RuO2, (Ru,RuO2), Ru nanorods array which were reduced from RuO2 vertical rods array grown in metalorganic chemical vapor deposition. The structure , morphology and composition of RuO2 nanorods before and after reduction were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy. The variation in electrocatalytic properties is studied by cyclic voltammetry. After reduction, the catalytic activity of Ru/RuO2, (Ru,RuO2), Ru nanorods was enhanced. However, the Ru metal dissolves in sulfuric acid during repetitive cycling in scanning voltage range -0.2V∼0.9V(vs. Ag/AgCl). The Ru dissolution is a problem common to all electrocatalysts containing PtRu.
The catalytic activity of Pt/Ru/RuO2, Pt/(Ru,RuO2), Pt/Ru is studied in CO stripping and cyclic voltammetry using methanol, ethanol, formic acid, ethylene glycol, formamide. Various factors in catalytic activity have been extensively studied. In methanol oxidation reaction, the best electrocatalyst is Pt/Ru(7.6nm) which exhibits a higher oxidation current density than the JM PtRu HiSPEC 6000 in the voltage range 0.48V∼0.85V(vs. Ag/AgCl). But Ru will dissolve over 0.50V(vs. Ag/AgCl). So Pt/Ru(7.6nm) is better than JM PtRu HiSPEC 6000 in the voltage range 0.48V∼0.50V(vs. Ag/AgCl). In the CO stripping, CO stripping peak potential of Pt/Ru(7.6nm) is 0.286V(vs. Ag/AgCl) using sweep rate 10mV/s. It’s value is as low as others experimental data, so Pt/Ru(7.6nm) has good tolerance for CO.
Besides, Pt of electroplating on smaller Ru grain size by reducing RuO2NR has excellence at oxiding methanol.
Keywords: RuO2 nanorods, electrocatalysts, CO tolerance

中文摘要……………………………………………………….….…....I 英文摘要………………………………………………………….....…III 誌謝…………………………………………………………………….V 目錄………………………………………………………………….…VI 圖目錄……………………………………………………………….....XI 表目錄…………………………………………………………….…..XVI 第一章 緒論……………………………………………………...…...…1 1-1 氧化釕晶體的簡介……………………..…….……….………….1 1-2 釕與鉑的晶體結構………………………………...……………..4 1-3 PtRu電化學觸媒特性………………………………...…………..5 1-4 研究動機與目的…….…………………………….……...………9 第二章 實驗方法及步驟……………………………………...……….11 2-1 氧化釕奈米桿之製備…………………………………………...11 2-1-1 實驗藥品及規格……………………………………………11 2-1-2 氧化釕奈米桿之化學氣相沉積設備……………..….……12 2-1-3 氧化釕奈米桿之化學氣相沉積實驗步驟…………..…….14 2-2 氧化釕奈米桿之還原………………….…..………..….….……15 2-2-1 實驗藥品及規格……………………..………..……...……15 2-2-2 氧化釕奈米桿還原設備……………………………...……16 2-2-3 氧化釕奈米桿還原實驗步驟……………………...………18 2-3 電化學實驗部分…………………………………….…...…..….19 2-3-1 實驗藥品及規格…………………………………….……..19 2-3-2 工作電極之製作…………………………………………...21 2-3-3 RuO2、Ru/RuO2、(Ru,RuO2)及Ru的循環伏安測試…….24 2-3-4 Pt/RuO2、Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru觸媒的製備..25 2-3-5 燃料測試………………………………………………...…26 2-3-6 CO毒化測試………………………………………………..26 2-4 分析儀器設備……………………………………………...……27 2-4-1 電化學分析儀器………………………………...…………27 2-4-2 X-ray繞射儀……………………………………….………..27 2-4-3 場發射掃描式電子顯微鏡(FESEM)…………………....…27 2-4-4 掃描穿透式電子顯微鏡(TEM)……………………..……..28 2-4-5 X-ray光電子能譜儀(XPS)……………………………..…...28 2-4-6 拉曼散射光譜儀(Raman scattering spectrometer)……..….29 2-5 實驗流程……………………………………………………...…30 第三章 結果與討論…...………...……………………………………..31 3-1 氧化釕奈米桿…………………………….…….….……………32 3-1-1 氧化釕奈米桿的電鏡圖………………….….…………….32 3-1-2 氧化釕奈米桿的XRD圖譜……………….……………….36 3-1-3 氧化釕奈米桿的循環伏安圖譜……………….…………..37 3-2 高溫真空還原的金屬釕/氧化釕奈米桿………………….…….38 3-2-1 高溫真空還原的金屬釕/氧化釕奈米桿XRD圖譜……….38 3-2-2 高溫真空還原的金屬釕/氧化釕奈米桿電鏡圖…………..40 3-2-3 高溫真空還原的金屬釕/氧化釕奈米桿循環伏安圖……..42 3-3 氫氣還原的金屬釕奈米桿………………………………….…..43 3-3-1 氫氣還原的金屬釕奈米桿XRD圖譜………………….…43 3-3-2 氫氣還原的金屬釕奈米桿電鏡圖…………………….…..46 3-3-3 氫氣還原的金屬釕奈米桿循環伏安圖………………..….48 3-4 氧化釕奈米桿於還原前後的拉曼光譜分析………………..…49 3-5釕金屬的溶解現象…………………………………………..…..50 3-5-1 Ru/RuO2(20∼120分鐘)的循環伏安多圈測試……………50 3-5-2 Ru/RuO2的釕金屬溶解電鏡圖……………………….…….53 3-5-3 (Ru,RuO2)與Ru的循環伏安多圈測試……………….……55 3-5-4 (Ru,RuO2)與Ru的釕金屬溶解電鏡圖……………….……57 3-6 Pt/RuO2、Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru觸媒…………….59 3-6-1 Pt/RuO2、Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru的循環伏安圖 ………………………………………………………………..59 3-6-2 Pt/RuO2、Pt/Ru/RuO2、Pt/(Ru,RuO2)及Pt/Ru的電鏡圖與XRD圖譜……………………………………..………….....63 3-6-3 Pt(0.10mg/cm2)/Ru/RuO2(120分鐘)的循環伏安多圈測試..67 3-7 有機小分子燃料氧化……………………….…………….…….70 3-7-1 RuO2、Ru/RuO2(120分鐘)、(Ru,RuO2)及Ru的燃料測試..70 3-7-2 Pt/RuO2與Pt/Ru/RuO2(120分鐘)的燃料測試……..………74 3-7-3 不同Pt承載(0.05、0.10及0.51mg/cm2)/Ru/RuO2(120分鐘)的燃料測試……………………………………….…….…..76 3-7-4 比較Pt/Ru(不同晶粒尺寸)/RuO2的燃料測試…….…..….79 3-7-5 Pt/Ru/RuO2(20分鐘)、Pt/(Ru,RuO2)及Pt/Ru的燃料測試..81 3-7-6 比較Pt/Ru與JM PtRu在甲醇的測試……………………..84 3-8 CO剝除(CO stripping)…………………………………………..86 3-8-1 RuO2、Ru/RuO2(120分鐘)、(Ru,RuO2)及Ru的CO剝除測試………………………………………………………...….86 3-8-2 Pt/RuO2、Pt/Ru/RuO2(120分鐘)、Pt/(Ru,RuO2)及Pt/Ru的CO剝除測試…………………………………….…….……88 3-8-3不同Pt承載量(0.05、0.10及0.51mg/cm2)/Ru/RuO2的CO剝除測試………………….…………………….……….….91 3-8-4比較不同掃流速率對CO剝除測試的影響………………..93 第四章 結論……………………………………………………………95 參考文獻………………………………………………………………..99

1.Y. S. Huang, H. L. Park, Fred H. Pollak, “Growth and Characterization of RuO2 Single Crystals”, Mat. Res. Bull., 17(1982)1305-1312.
2.T. Hepel, F. H. Pollak, “Effect of Crystallographic Orientation of Single-Crystal RuO2 Electrodes on the Hydrogen Adsorption Reactions”, J. Electrochem. Soc., 131(1984)2094-2100.
3.M. Tomkiewicz, Y. S. Huang, F. H. Pollak, “The Potential of Zero Charge of Oriented Single-Crystal RuO2 in Aqueous Electrolytes”, J. Electrochem. Soc., 130(1983)1514-1518.
4.Y. S. Chu, T. E. Lister, W. G. Cullen, H. You, Z. Nagy, “Commensurate Water Monolayer at the RuO2(110)/Water Interface”, Physical Review Letters, 86(2001)3364-3367.
5.T. E. Lister, Y. Chu, W.Cullen, H. You, R. M. Yonco, J. F. Mitchell, Z. Nagy, “Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces”, Journal of Electroanalytical Chemistry, 524-525(2002)201-218.
6.A. A. Bolzan, C. Fong, B. J. Kenney, C. J. Howard, “Structural Studies of Rutile-Type Metal Dioxides”, Acta Cryst, B53(1997)373-380.
7.L. F. Mattheiss, “Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B, 13(1976)2433-2450.
8.余樹楨,“晶體之結構與性質”,國立編譯館,台北,第280頁,民國七十八年。
9.W. D. Ryden, A. W. Lawson, “Electrical Transport Properties of IrO2 and RuO2”, Physical Review, 1(1970)1494-1500.
10.R. C. West(Ed.), Handbook of Chemistry and Physics, F146(1989).
11.S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, Journal of Electroanalytical Chemistry, 461(1999)14-31.
12.H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell”, Journal of Power Sources, 155(2006)95-110.
13.E. V. Spinacé, A. O. Neto, T. R. R. Vasconcelos, M. Linardi, “Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process”, Journal of Power Sources, 137(2004)17-23.
14.T. C. Deivaraj, J. Y. Lee, “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, Journal of Power Sources, 142(2005)43-49.
15.L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, “Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells”, Electrochimica Acta, 50(2005)2371-2376.
16.Z. B. Wang, G. P. Yin, P. F. Shi, “Effects of ozone treatment of carbon support on Pt–Ru/C catalysts performance for direct methanol fuel cell”, Carbon, 44(2006)133-140.
17.E. V. Spinacé, A. O. Neto, M. Linardi, “Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 129(2004)121-126.
18.M. Watanabe, S. Motoo, “Electrocatalysis by ad-atoms PartII. Enhancement of the Oxidation of Methonal on Platinum by Ruthenium ad-atoms”, Electroanalytical Chemistry and Interfacial Electrochemistry, 60(1975)267-273.
19.T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotos of methanol”, Surface Science, 335(1995)353-360.
20.T. Frelink, W. Visscher, J. A. R. van Veen, “Measurement of the Ru Surface Content of Electrocodeposited PtRu Electrodes with the Electrochemical Quartz Crystal Microbalance: Implications for Methanol and CO Electrooxidation”, Langmuir, 12(1996)3702-3708.
21.H. A. Gasteiger, N. MarkoviC, P. N. Ross, Jr., E. J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem., 98(1994)617-625.
22. A. Kabbabi, R. Faure, R. Durand, B. Beden , F. Hahn, J.-M. Leger , C. Lamy, “In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes”, Journal of Electroanalytical Chemistry, 444(1998)41-53.
23.S. T. Kuk, A. Wieckowski, “Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 141(2005)1-7.
24.K. Sasaki , J. X. Wang , M. Balasubramanian , J. McBreen, F. Uribe , R. R. Adzic, “Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability”, Electrochimica Acta, 49(2004)3873-3877.
25.S. R. Brankovic, J. X. Wang, R. R. Adzˇic, “Pt Submonolayers on Ru Nanoparticles A Novel Low Pt Loading, High CO Tolerance Fuel Cell Electrocatalyst”, Electrochemical and Solid-State Letters, 4(2001)A217-A220.
26.S. R. Brankovic, J. McBreen, R. R. Adzˇic, “Spontaneous deposition of Pt on the Ru(0001) surface”, Journal of Electroanalytical Chemistry, 503(2001)99-104.
27.A. A. El-Shafei, R. Hoyer, L. A. Kibler, D. M. Kolb, “Methanol Oxidation on Ru-Modified Preferentially Oriented Pt Electrodes in Acidic Medium”, Journal of The Electrochemical Society, 15(2004)F141-F145.
28.P. Waszczuk, G.-Q. Lu, A. Wieckowski, C. Lub, C. Rice, R. I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis”, Electrochimica Acta, 47(2002)3637-3652.
29.A. Lamouri, Y. Gofer, Y. Luo, G. S. Chottiner, D. A. Scherson, “Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy, and CO-Temperature-Programmed Desorption Characterization of Bimetallic Ruthenium-Platinum Surfaces Prepared by Chemical Vapor Deposition”, J. Phys. Chem.,B, 105(2001)6172-6177.
30.T. D. Jarvi, T. H. Madden, E. M. Stuve, “Vacuum and Electrochemical Behavior of Vapor Deposited Ruthenium on Platinum (111) ”, Electrochemical and Solid-State Letters, 2(1999)224-227.
31.G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P. Kulesza, “Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers”, Journal of Electroanalytical Chemistry, 467(1999)143-156.
32.J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, “How To Make Electrocatalysts More Active for Direct Methanol OxidationsAvoid PtRu Bimetallic Alloys!”, J. Phys. Chem. B, 104(2000)9772-9776.
33.H. M. Villullas, F. I. Mattos-Costa, L. O. S. Bulho˜es, “Electrochemical Oxidation of Methanol on Pt Nanoparticles Dispersed on RuO2”, J. Phys. Chem. B, 108(2004)12898-12903.
34.L. X. Yang, R. G. Allen, K. Scott, P. A. Christenson, S. Roy, “A study of PtRuO2 catalysts thermally formed on titanium mesh for methanol oxidation”, Electrochimica Acta, 50(2005)1217-1223.
35.Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, “Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells”, Electrochemistry Communications, 7(2005)593-596.
36.K. C. Kwiatkowski, S. B. Milne, S. Mukerjee, C. M. Lukehart, “Synthesis of Pt–Mo/Carbon Nanocomposites from Single-Source Molecular Precursors: A (1:1) PtMo/C PEMFC Anode Catalyst Exhibiting CO Tolerance”, Journal of Cluster Science, 16(2005)251-272.
37.S. Zafeiratos, G. Papakonstantinou, M. M. Jacksic, S. G. Neophytides, “The effect of Mo oxides and TiO2 support on the chemisorption features of linearly adsorbed CO on Pt crystallites: an infrared and photoelectron spectroscopy study”, Journal of Catalysis, 232(2005)127-136.
38.K. Waki, K. Matsubara, K. Ke, Y. Yamazaki , “Self-Organized Pt/SnO2 Electrocatalysts on Multiwalled Carbon Nanotubes”, Electrochemical and Solid-State Letters, 8(2005)A489-A491.
39.L. X. Yang, C. Bock, B. MacDOUGALL, J. Park, “The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction”, Journal of Applied Electrochemistry, 34(2004)427-438.
40.S. Y. Kang, K. H. Choi, S. K. Lee, C. S. Hwang, H. J. Kim, “Deposition and Characterization of Ru Thin Films Prepared by Metallorganic Chemical Vapor Deposition”, Journal of the Korean Physical Society, 37(2000)1040-1044.
41.T. Kawaguchi, W. Sugimoto, Y. Murakami, Y. Takasu, “Temperature dependence of the oxidation of carbon monoxide on carbon supported Pt, Ru, and PtRu”, Electrochemistry Communications, 6(2004)480-483.
42.A. J. Bard, J. Jordan, R. Parsons, “Electrodchemical Methods Fundamentals and Applications”, Wiley, New York, (1985).
43.J. H. Ahn, W. Y. Chol, W. J. Lee, H. G. Kim, “Annealing of RuO2 and Ru Bottom Electrodes and Its Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys., 37(1998)284-289.
44.S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukoviff, B. E. Conway, “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes”, J. Electrochem. Soc., 125(1978)1471-1480.
45.Y. Matsui, M. Hiratani, S. Kimura, “Hydrogen reduction of a RuO2 electrode prepared by DC reactive sputtering”, Journal of Materials Science., 35(2000)4093-4098.
46.Y. S. Huang, S. S. Lin, C. R. Huang, M. C. Lee, T. E. Dann, F. Z. Chien, “Raman spectrum of IrO2”, Solid State Communications, 70(1989)517-522.
47.J. S. Gao, Z. Q. Tian, “Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates”, Spectrochimica Acta Part A, 53(1997)1595-1600.
48.彭文權,“以沉積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997。
49.C. Bock, B. MacDougall, Y. LePage, “Dependence of CH3OH Oxidation Activity for a Wide Range of PtRu Alloys”, Journal of The Electrochemical Society, 151(2004)A1269-A1278.
50.A. Capon, R. Parsons, “The Oxidation of Formic Acid at Noble Metal Electrodes I. Review of Previous Work”, J. Electroanal., 44(1973)1-7.
51.W. F. Lin, P. A. Christensen,A. Hamnett, “The electro-oxidations of methanol and formic acid at the Ru(0001) electrode as a function of temperature: in-situ FTIR studies”, Phys. Chem. Chem. Phys., 3(2001)3312-3319.
52.T. Lei, J. Lee, M.S. Zei, G. Ertl, “Surface properties of Ru(0001) electrodes interacting with formic acid”, Journal of Electroanalytical Chemistry, 554-555(2003)41-48.
53.Z. Jusys, J. Kaiser, R.J. Behm, “Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-A DEMS study”, Electrochimica Acta, 47(2002)3693-3706.

QR CODE