簡易檢索 / 詳目顯示

研究生: 陳善政
Shan-Cheng Chen
論文名稱: 多聆聽點空間響應之等化與分群
Multiple Position Room Response Clustering and Equalization
指導教授: 林敬舜
Ching-Shun Lin
口試委員: 陳維美
Wei-Mei Chen
林昌鴻
Chang-Hong Lin
林淵翔
Yuan-Hsiang Lin
王煥宗
Huan-Chun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 度量多維標定法音流分離多聽眾空間等化濾波器多聲道音訊處理
外文關鍵詞: Multiple Listener Room Equalization Filter, Stream Segregation, Metric Multidimensional Scaling, Multichannel Audio Signal Processing
相關次數: 點閱:134下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發高解析度多媒體系統的目的之一在於為身處不同地點的人們提供有如在另一場景般的逼真感受,而其重點在必須將人們所能看得到、聽得到、甚至觸摸得到的訊息利用資訊技術準確地擷取與再生。隨著音樂自動分析、組織與合成的需求增加,樂音分離與重建在近年來日受矚目。傳統求得空間等化器的方式為利用單一麥克風在一定點上量測由揚聲器所發出來的脈衝響應,接著求取其反函式用以修正空間頻率響應。使用這種方式的缺點為其只適用於單一聆聽點,在多數的情況下也不適合應用於多聆聽點的量測上。再者,此法對於聆聽者即便微小的移動便有失準的疑慮。有鑑於此,在本研究中我們使用度量多維標定法來等化與視覺化空間響應。此映射提供了群聚化空間響應的另一觀點,並呈現了多聆聽點等化後的一致性。更明確地說,在多維空間中訊號間的距離於降至二維平面後使得表達空間響應的群聚性變得可能。各個群組間的相似性乃基於頻譜振幅響應強度大小,而這些多樣的原型響應稍後將被用來產生單一且具概括性的點響應。此等化與分群的技術將可被用於如家庭劇院與車內空間等需多點音源控制的場合。除此之外,由於豐富的環場感來自於多方向的聲音重建,透過訊號處理、麥克風陣列與揚聲器陣列等,將使得小空間得以模擬大空間的音場。


    One goal of the hi-definition multimedia systems is to create the illusion of proximity for people physically located in different areas. To achieve this, it is essen-tial to pick-up and regenerate all the crucially visual, aural, and tactile cues that are perceptible by human senses. As the demand for automatically analyzing, organizing, and synthesizing a vast amount of musical information, musical sound separation and reconstruction are getting more and more attention recently. Conventional approaches to the room equalization have used a single microphone at the listening position to measure impulse responses in sequence from a loudspeaker, and then use an inverse filter to correct the frequency response. The problem of utilizing this approach is that it only works well for the one-point scenario and in most cases is not practical enough for measuring multiple spots. Moreover, it does not function at all for other listeners in the room even though the listener changes positions slightly. In this study, we use the metric multidimensional scaling for visualizing and equalizing room responses. This mapping provides an alternative perspective on the formation of clusters of room responses and displays the uniformity of the equalized responses at multiple positions. More specifically, distances of signals in multidimensional spaces are mapped onto distances in two dimensions after dimension reduction, and therefore displaying the clustering behavior based on the room responses is possible. In addition, we use the clustering technique for finding similarities among room responses based on the strengths of magnitude responses. These prototypical responses can then be combined to create a general point response. The equalization and clustering algorithms proposed in this work find applications in the requirement of multi-point sound control such as home theater and in-vehicle environment. Since rich surrounding experience results from the reconstruction of multi-directional sounds, with the advance in microphone array, loudspeaker array and digital signal processing technologies, it is desirable and possible to simulate the sound field of a concert hall in a small space.

    摘要 I ABSTRACT II 目錄 III 圖片索引 VI 第一章 導論 1 1.1 前言 1 1.2 研究目的 1 1.3 文獻探討 2 第二章 研究方法 4 2.1 實驗硬體設備 5 2.2 揚聲器設置 10 2.3 量測規則 16 2.4 室內空間特徵量測 18 2.4.1 脈衝響應量測 18 2.4.2 頻率響應量測 21 2.5 等化器設計 23 2.6 沉浸式音場等化技術 25 第三章 降維演算法 27 3.1 降維演算法分類 28 3.1.1 PCA 29 3.1.2 Kernel PCA 30 3.1.3 Isomap 31 3.1.4 LLE 31 3.1.5 Laplacian Eigenmaps 32 3.1.6 Sammon Mapping 33 3.2 降維演算法分析與評估 36 第四章 分群演算法 43 4.1 硬式群聚方法 45 4.1.1 單一鏈結聚合分群 45 4.1.2 完整鏈結聚合分群 47 4.1.3 群組平均聚合分群 48 4.1.4 加權群組平均聚合分群 49 4.1.5 重心點基礎聚合分群 50 4.1.6 中值式聚合分群 52 4.1.7 沃德聚合分群 53 4.2 模糊式群聚方法 56 第五章 實驗量測與結果 58 5.1 多聆聽位置補償系統 58 5.2 音場補償效果檢視 63 第六章 結論與未來展望 66 6.1 結論 66 6.2 未來展望 67 參考文獻 68 附錄A 實驗量測結果比較 71

    [1]C. S. Lin, Y. H. Chen, and D. L. Shih, “Nonlinear calibration of the room transfer function for multichannel audio system,” in 25th Symposium of Acoustical Society of the Republic of China, Taichung, Taiwan, Nov. 2012, pp. 151–157.
    [2]J. N. Mourjopoulos, “Digital equalization of room acoustics,” Journal of the Audio Engineering Society, vol. 42, pp. 884–900, Nov. 1994.
    [3]J. Chowning, “The simulation of moving sound sources,” Journal of the Audio Engineering Society, pp. 2–6, 1971.
    [4]J. Blauert, Spatial Hearing, Revised Edition, MIT Press, Cambridge, 1997.
    [5]P. D. Hatziantoniou and J. N. Mourjopoulos, “Results for room acoustics equalisation based on smoothed responses,” Journal of the Audio Engineering Society, vol. 114, pp. 5779–5786, Mar. 2003.
    [6]V. Pulkki and T. Lokki, “Creating auditory displays to multiple loudspeakers using VBAP: a case study with diva project,” International Conference on Auditory Display, pp. 1–5, 1998.
    [7]H. Irimajiri, T. Kamekawa, A. Marui, A. Omoto, H. Suzuki, M. Sumitomo, M. Sawaguti, A. Fukada, H. Nishida, M. Mimura, K. Ono, and S. Inoue, “The highly preferred sound levels of ambience microphone arrays to front microphone arrays with the fixed levels for surround recordings,” Presented at the AES Surround Recording Experiments Project Report, pp. 1–15, 2006.
    [8]S. Bharitkar and C. Kyriakakis, “Visualization of multiple listener room acoustic equalization with Sammon map,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 2, pp. 542–551, 2007.
    [9]J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” Journal of the Acoustical Society of America, vol. 65, pp. 943–950, 1979.
    [10]V. Pulkki, “Virtual sound source positioning using vector base amplitude panning,” Journal of the Audio Engineering Society, vol. 45, pp. 456–466, Jun. 1997.
    [11]G. Theile and G. Plenge, “Localization of lateral phantom sources,” Journal of the Acoustical Society of America, vol. 25, pp. 196–200, Apr. 1977.
    [12]V. Pulkki, Spatial Sound Generation and Perception by Amplitude Panning Techniques, Helsinki University of Technology, Aug. 2001.
    [13]A. Carini, I. Omiciuolo, and G. L. Sicuranza, “Multiple position room response equalization: frequency domain prototype design strategies,” IEEE Transactions on Audio, Speech, and Language Processing, pp. 122–135, 2012.
    [14]M. R. Schroeder, “Diffuse sound reflection by maximum-length sequences,” Journal of the Acoustical Society of America, vol. 57, pp. 149–150, 1975.
    [15]S. Mu‥ller and P. Massarani, “Transfer function measurement with sweeps,” Journal of the Audio Engineering Society, vol. 49, pp. 443–471, 2001.
    [16]C. S. Lin and Y. H. Chen, “Phase compensation for multichannel low-frequency response using minimax approximation,” International Conference on Audio, Language and Image Processing, pp. 182–188, 2012.
    [17]S. Bharitkar and C. Kyriakakis, Immersive Audio Signal Processing, Springer, Los Angeles, CA, 2005.
    [18]B. D. Radlovic and R. A. Kennedy, “Nonminimum-phase equalization and its subjective importance in room acoustics,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 8, no. 6, pp. 728–737, 2000.
    [19]S. T. Roweis, “EM algorithms for PCA and SPCA,” Neural Information Processing Systems, vol. 10, pp. 626–632, 1997.
    [20]M. Partridge and R. Calvo, “Fast dimensionality reduction and simple PCA,” Journal of Intelligent Data Analysis, pp. 203–214, Jun. 2013.
    [21]B. Scholkopf, A. J. Smola, and K. R. Mu‥ller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural computation, pp. 1299–1319, 1998.
    [22]M. E. Tipping, “Sparse kernel principal component analysis,” National Science Foundation, 2001.
    [23]M. Balasubramanian and E. L. Schwartz, “The Isomap algorithm and topological stability,” Science, vol. 295, no. 5552, pp. 7a, Jan. 2002.
    [24]J. A. Lee and M. Verleysen, “Nonlinear dimensionality reduction of data manifolds with essential loops,” Neurocomputing, pp. 29–53, Jan. 2005.
    [25]S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.
    [26]H. Chang, D. Y. Yeung, and Y. Xiong, “Super-resolution through neighbor embedding,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 275–282, 2004.
    [27]M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” Neural Information Processing Systems, vol. 14, pp. 585–591, 2002.
    [28]W. S. Torgerson, “Multidimensional scaling: theory and method,” Psychometrika, vol. 17, no. 4, pp. 401–419, 1952.
    [29]T. Cox and M. Cox, Multidimensional Scaling, Chapman & Hall, London, UK, 1994.
    [30]J. A. Costa and A. O. Hero, “Classification constrained dimensionality reduction,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 1077–1080, 2005.
    [31]S. Ekins, K. V. Balakin, N. Savchuk, and Y. Ivanenkov, “Insights for human eth-er-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques,” Journal of Medicinal Chemistry, vol. 49, no. 17, pp. 5059–5071, 2006.
    [32]L. J. P. Van der Maaten, E. O. Postma, and H. J. Van Den Herik, “Dimensionality reduction: a comparative review,” Journal of Machine Learning Research, vol. 10, pp. 1–41, 2009.
    [33]G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Applications, vol. 20, Society for Industrial and Applied Mathematics, 2007.
    [34]L. Pierre, and L. Legendre, Numerical Ecology, vol. 20, Elsevier, Oxford, UK, 2012.
    [35]J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic, Norwell, MA, USA, 1981.

    QR CODE