簡易檢索 / 詳目顯示

研究生: 錢明鴻
Ming-Hung Chien
論文名稱: 軌道車輛系統車輪/鋼軌輪廓適用性 之簡易評估方法及查證
Simplified Assessment Methodology and Verification of Applicability for Wheel/Rail Profile of Rolling Stock
指導教授: 林榮慶
Zone-Ching Lin
吳翼貽
Ye-Ee Wu
廖崑亮
Kuen-Laing Liao
成維華
Wei-Hua Chieng
口試委員: 王國雄
許俊逸
顏家鈺
廖崑亮
楊條和
廖慶隆
吳翼貽
林榮慶
成維華
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 145
中文關鍵詞: 車輪輪廓方程式鋼軌輪廓方程式輪/軌接觸幾何合成乘坐舒適度脫軌係數
外文關鍵詞: Wheel/rail profile equation, Wheel/rail contact geometry synthesis, Ride comfort, Derailment coefficient
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究提出一種基於〝輪/軌接觸幾何合成〞所發展出適用於鋼輪/鋼軌軌道系統之簡易評估方法,可用於車輪與鋼軌輪廓設計初期優劣評估,無需建立複雜之數值模擬模型及繁複之現場測量。此簡易評估方法使用車輪與鋼軌輪廓方程式及輪/軌接觸幾何合成方法,探索每一側車輪與鋼軌之間所有可能的接觸位置,藉由輪/軌接觸點分析輪軸運動之動態軌跡線;依據動態軌跡線變化量,可得知輪軸於車輪與鋼軌接觸踏面變化時之運動行為;若輪/軌接觸踏面位於瞬時旋轉中心軌跡線(Centrode)變化量較小之區域,則可獲得較佳的乘坐舒適度,亦可定義為輪/軌接觸踏面甜蜜點(Sweet spot)範圍,作為乘坐舒適度之簡易評估指標。在本研究中,參考G1曲線連續性之機械製圖方法設計輪廓繪製機構,及描述可靠之現行車輪與鋼軌輪廓,進而透過機械分析法推導其輪廓方程式;亦將推導所得之車輪與鋼軌輪廓方程式,轉換為可輸入電腦數值控制工具機之G代碼(G-Code),採用刀具路徑模擬軟體進行驗證。且本研究為瞭解台灣高速鐵路(THSR)現行之新幹線車輪匹配其他鋼軌是否可提供更佳之乘坐舒適度,應用新幹線車輪匹配UIC60和JIS60二種鋼軌輪廓作為案例研究;研究結果顯示,新幹線車輪匹配UIC60鋼軌比新幹線車輪匹配JIS60鋼軌具有更寬的甜蜜點接觸範圍,使得軌道車輛於彎道行駛時,新幹線車輪可更有效地與UIC60鋼軌匹配。最後,將新幹線車輪、UIC60鋼軌及JIS60鋼軌之輪廓方程式,應用輪/軌接觸幾何合成方法研究輪/軌接觸點位置,導入軌道車輛數值模擬軟體進行分析,及比對不同輪/軌配對產生之車廂垂向及側向振動響應;數值模擬分析結果顯示,當軌道車輛於彎道行駛時,新幹線車輪匹配UIC60鋼軌,無論垂向或側向振動加速度皆小於新幹線車輪搭配JIS60鋼軌,並提供更好的乘坐舒適度。此外,將新幹線車輪匹配UIC60鋼軌及JIS60鋼軌之垂向及側向接觸力用於計算Nadal脫軌係數(Q/P值);其結果顯示,無論新幹線車輪匹配UIC60鋼軌或JIS60鋼軌,其Nadal脫軌係數(Q/P值)最大值皆約0.24,雖皆符合各國高速鐵路脫軌係數標準。綜合上述研究分析結果與簡易評估方法具有相同之結果,證明動態軌跡線方法可適用於簡易評估乘坐舒適度,進而作為一種輪/軌適用性評估簡易評估方法。


This study proposes a simplified methodology to assess the initial design of the wheel/rail contact profile for the railway system. This method does not require complicated simulation models or measurements, but simply applies wheel/rail contact geometry synthesis to explore all possible contact positions between the wheel and the rail on either side of the track. In addition, the dynamic motion of the wheelset obtained from the obtained wheel/rail contact points is analyzed. Based on the synthesis results, moving and fixed centrodes of the wheelset motion are determined. According to the smoothness of the moving and fixed centrodes, the wheelset motion behavior in response to the change in the tread contact of wheel/rail is determined. The wheel/rail contact area is located in the most degree of smoothness of the moving and fixed centrodes that will obtain a better ride comfort than other contact area, which is further applied to define the range of the “sweet spot” to derive a simplified assessment of ride comfort. Herein, a mechanical drawing method with reference to G1 continuity is used for drawing the mechanism in order to describe a wheel/rail contact profile and to derive a profile equation by mechanical analysis. The wheel/rail contact profile equation is then converted into the G-Code equation, which can be input to the computer numerical control machine to improve its practicality. The Taiwan High Speed Rail (THSR) uses the Shinkansen standard wheel profile. It is generally discussed whether the UIC60 rail, which is widely used in the domestic railway business, provides a better degree of comfort than the existing JIS60 rail used in the THSR system. The Shinkansen wheel contact conditions with the UIC60 rail and the JIS60 rail are analyzed and applied in the contact geometry synthesis. The results show that the Shinkansen wheel in contact with the UIC60 rail is more effective because the UIC60 rail has a wider range of contact sweet spots than the JIS60 rail for rolling stock running on a curved track. Finally, the Shinkansen wheel profile and each rail profile equation are applied in simulation software for a vehicle/track system under different wheel/rail match conditions. This is done to verify whether the contact geometry synthesis can be used to assess the ride comfort of a vehicle and can serve as a simplified assessment method for wheel/rail matching. A dynamic simulation program with parameters adjusted to fit the experimental values is used to compare the results. The results indicate that both the vertical and lateral vibration acceleration responses of a carbody with the Shinkansen wheels in contact with the UIC60 rail are lower than those with the JIS60 rail. Furthermore, the UIC60 rail provides a better degree of ride comfort of a carbody equipped with the Shinkansen wheels. In addition, the vertical and lateral contact forces of the Shinkansen wheels in contact with the UIC60 rail and the JIS60 rail are used to calculate the Nadal derailment coefficient (Q/P ratio); it is approximately 0.24 for both wheel/rail contact types, which meets the international high-speed rail derailment criteria. The results of the numerical analysis and the proposed method agree with each other. Therefore, the wheel/rail contact geometry synthesis can be used to assess the motion behavior of rolling stock and to derive a simplified index for ride comfort.

目錄 摘要 I ABSTRACT III 誌謝 V 符號表 VII 目錄 IX 圖索引 XIII 表索引 XVI 第一章 緒論 1 1.1研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 4 1.3.1 車輪與鋼軌幾何輪廓 5 1.3.2 車輪與鋼軌幾何輪廓描述方法 6 1.3.3 幾何輪廓最適化 8 1.3.3.1 輪/軌磨耗之幾何輪廓最適化 8 1.3.3.2 軌道車輛動力學特性之幾何輪廓最適化 9 1.3.3.3 軌道車輛營運週期之幾何輪廓最適化 14 1.4 研究架構 16 第二章 G1曲線連續性之車輪及鋼軌輪廓方程式 18 2.1 G1曲線連續性 18 2.2 G1曲線連續性與C1曲線連續性之差異 20 2.3鋼軌輪廓 21 2.3.1 鋼軌斷面輪廓設計重點 24 2.3.2 鋼軌輪廓繪製機構 26 2.3.3 鋼軌輪廓機械分析法 33 2.4新幹線車輪輪廓 43 2.4.1 車輪斷面輪廓設計重點 44 2.4.2新幹線車輪輪廓繪製機構 44 2.4.3新幹線車輪輪廓機械分析 49 2.5 G-CODE輪廓方程式與應用 52 第三章 輪/軌接觸幾何合成方法 57 3.1輪/軌接觸幾何合成方法 58 3.2瞬時旋轉中心軌跡線之定義與繪製 64 3.3輪/軌接觸幾何合成之接觸點分析 66 3.4 軌道車輛乘坐舒適度簡易評估與分析 72 第四章 軌道車輛數值模擬分析與驗證 76 4.1軌道車輛數值模擬模型與參數 76 4.2數值模擬分析軟體與現地量測驗證 80 4.3 具G1連續性之鋼軌輪廓效益分析 84 4.4 JIS60鋼軌及UIC60鋼軌數值模擬分析 90 4.5 NADAL脫軌準則 95 4.5 JIS60鋼軌與UIC60鋼軌之NADAL脫軌係數分析 96 第五章 結論及未來展望 99 5.1結論 99 5.2 未來展望 102 參考文獻 104 附錄 111 A.1 車輛/軌道系統分析方法 111 A.2車輛/軌道系統數值模擬之運動方程式 116 A.2.1車輛模擬系統之運動方程式 116 A.2.1.1 車廂之運動方程式 120 A.2.1.2 轉向架之運動方程式 122 A.2.1.3 輪軸組之運動方程式 127 A.2.2軌道模擬系統之運動方程式 131 A.3車輛/軌道系統數值模擬參數 135 A.4 利用幾何關係求解方程式 142 A.4.1雙圓交點解Y軸距離 142 A.4.2圓與線交點幾何解Y軸距離 143 A.4.3圓與線交點幾何解夾角角度及距離 144 作者簡介 145

[1] C. Esveld, “Modern Railway Track”, MRT-Productions, Zaltbommel, Netherlands, 2001.

[2] S.D. Iwnicki, “Handbook of railway vehicles dynamics”, Taylor & Francis Group, Florida, 2006.

[3] G.W. Yang, Y.J. Wei, G.L. Zhao and Y.B. Liu, “Current research progress in the mechanics of high speed rails”, Advances in Mechanics, No.45, pp.217-458, 2015.

[4] Y. Sato, “New Track Mechanics in Chinese version”, China Railway Polishing House, Bejin, 2001.

[5] M.S. Sichani, “Wheel-rail contact modelling in vehicle dynamics simulation”, KTH Royal Institute of Technology, Licentiate thesis, 2013.

[6] H. Sugiyama and Y. Suda, “On the Contact Search Algorithms for Wheel/Rail Contact Problem”, J. Comput. Nonlinear Dynam, Vol. 4, No. 4, 2009.

[7] Y. Soto, “Benefits of heavy rail on high-speed railways and design of 75G rail using coordinates”, Wear, Vol. 194, pp. 162-167, 1996.

[8] EN15302:A1, “Railway applications - Method for determining the equivalent conicity”, European Standardization Organizations, 2008.

[9] 涂兆躒, “輪軌接觸幾何關係之初探”, 國立成功大學土木工程學系碩士論文, 台南, 中華民國, 2006.

[10] J. Gerlici and T. Lack, “Railway wheel and rail head profiles development based on the geometric characteristics shapes”, Wear, Vol. 271, pp. 246-258, 2011.

[11] I. Persson and S.D. Iwnicki, “Optimisation of railway profile using a genetic algorithm”, Veh. Syst. Dyn., Vol. 41(Supp.), pp. 517-527, 2004.

[12] V. Braibant and C. Fleury, “Shape optimal design using B-splines. Comput”, Methods Appl. Mech. Eng., Vol. 44, No. 247–267, 1984.

[13] V.L. Markine and I.Y. Shevtsov, “Optimization of a wheel profile accounting for design robustness”, Proc. IMechE, Part F: J. Rail and Rapid Transit, Vol. 225, pp. 432-441, 2010.

[14] G. Shen, H. Chollet and Z.S. Ye, “Study on wheel profile and contact analysis”, J. China Railway Soc., Vol. 27, pp. 25-29, 2005.

[15] G. Shen, J.B. Ayasse, H. Chollet and I. Pratt, “A unique design method for wheel profiles by considering contact angle function (CAF)”, Proc. IMechE, Part F: J. Rail and Rapid Transit, Vol. 217, pp. 25-30, 2003.

[16] Z. Manfred, N. Dirk, G. Gerald, P. Oldrich and E. Bridget, “A multi-national survey of the contact geometry between wheels and rails”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal Rail and Rapid Transit, DOI:10.1177/0954409714568171, 2015.

[17] J. Sadeghi, M. Fathali and N. Boloukian, “Development of a new track geometry assessment technique incorporating rail cant factor”, Proc. IMechE, Part F: J. Rail and Rapid Transit, Vol. 223, pp. 255-263, 2008.

[18] Y. Sato, “Design of Rail Head Profile with Full Use of Grinding”, Wear, Vol. 144, pp. 362-372, 1991.

[19] J. Zhang, Y.Y. Wang, X.S. Jin and D.B. Cui, “Geometric design method of wheel profile for improving wheel and rail contact status”, Journal of Traffic and Transportation Engineering, Vol. 11, pp. 36-42, 2011.

[20] D.B. Cui, H. Wang, L. Li and X.S. Jin, “Optimal design of wheel profile for high-speed train”, Proc. IMechE, Part F: J Rail Rapid Transit, Vol. 227, doi:0954409713509979, 2013.

[21] 路兵, “鐵道車輛動力學特性”, 蘭州交通大學工程碩士論文, 甘肅, 中華人民共和國, 2016.

[22] G.Y. Mai and H.Y. Dai, “Effect of wheel-track matching on dynamics performance of high speed train”, Computer Aided Engineering, Vol. 22, No. 6, pp.37-43, 2013.

[23] 李龍, “高速車輛運動穩定性的研究”, 西南交通大學工程博士論文, 四川, 中華人民共和國, 2011.

[24] 賈璐, “高速車輛動力學性能評價方法研究”,西南交通大學工程博士論文, 四川, 中華人民共和國, 2016.

[25] M.J. Griffin, “Handbook of Human Vibration: Ch3 Vibration Discomfort”, Academic Press INC., San Diego, 1990.

[26] ISO 2631-1, “Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General requirements”, Inter-national Organization for Standardization, Switzerland, 1997.

[27] ISO 2631-2, “Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 2: Vibration in buildings (1 Hz to 80 Hz)”, International Organization for Standardization, Switzerland, 2003.

[28] UIC Code 513R, “Guide for evaluating comfort in relation to vibration in railway vehicles”, International Union of Railways, Paris, pp.7-15, 1994.

[29] BS EN 12299, Railway applications - Ride comfort for passengers - Measurement and evaluation, Britain Standard Institute, 2009.

[30] Y. Lee, K. Shin, S. Lee, Y. Song, S. Han, and M. Lee, “Ride Comfort Analysis using Physiological Parameters for e-Health Train”, World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, Vol. 25, No. 5, pp. 88-91, 2009.

[31] I.Y. Shevtsov, V.L. Markine, and C. Esveld, “Optimal design of wheel profile for railway vehicles”, Wear, Vol. 258, pp. 1022-1030, 2005.

[32] J. Zhang, S.G. Sun, and X.S. Jin, “Numerical simulation of Two-Point contact between wheel and rail”, Acta Mechanica Solida Sinica Press, Wuhan, China. Vol. 22, No. 4, pp. 352-359, 2009.

[33] C.Y. Chang, C.G. Wang, and Y. Jin, “Study on numerical method to predict wheel/rail profile evolution due to wear”, Wear, Vol.269, pp. 167-173, 2010.

[34] Y.E. Wu, W.F. Lee, T.H. Young, K.L. Liao and M.H. Chien, “Dynamic Analyses of a High-Speed Train Secondary Suspension System Equipped with Semi-Active Dampers Operating on Curved Tracks”, Journal of the Chinese Society of Mechanical Engineers, Vol.38, No.5, pp. 499-512, 2017.

[35] X.M. Sun, Y. Chu, J.C. Fan, and Q.X. Yang, “Research of Simulation on the Effect of Suspension Damping on Vehicle Ride”, Energy Procedia, Vol. 17, pp.145-151, 2012.

[36] M.J. Mohammad and S. Hassan, “Wheel/rail contact model for rail vehicle dynamics”, C. R. Mecanique, Vol. 339, pp. 700-707, 2011.

[37] V.N. Dinh, K.D. Kim and P. Warnitchai, “Dynamic analysis of three-dimensional bridge high-speed train interactions using a wheel-rail contact model”, Engineering Structures, Vol. 31, pp. 3090-3106, 2009.

[38] P. Antolı´n, N. Zhang, J.M. Goicolea, H. Xia, and M.A´. Astiz, “Consideration of nonlinear wheel-rail contact forces for dynamic vehicle-bridge interaction in high-speed railways”, Journal of Sound and Vibration, Vol. 332, pp. 1231-1251, 2013.

[39] P.T. Torstensson, J.C.O. Nielsen, and L. Baeza, “Dynamic train-track interaction at high vehicle speeds - Modelling of wheelset dynamics and wheel rotation”, Journal of Sound and Vibration, Vol. 330, pp. 5309-5321, 2011.

[40] L. Li, D.B. Cui and X.S. Jin, “State of Arts of Research on Railway Wheel Profile Optimization”, Journal of South West Jiao Tong University, Vol. 44, No. 1, pp. 12-19, 2009.

[41] Y.B. Xue, D.B. Cui, L. Li, X. Du, Z.F. Wen and X.S. Jin, “Parallel inverse design method of wheel profile”, Journal of Mechanical Engineering, Vol. 49, pp. 8-16, 2013.

[42] B.K. Barsky, and T.D. DeRose, “Geometric Continuity of Parametric Curves”, Technical Report No. UCB/CSD 84/205, pp. 1-24, 1984.

[43] C.P. Teng, S. Bai and J. Angeles, “Shape Synthesis in Mechanical Design”, Acta Polytechnica, Vol. 47, No. 6, pp. 56-62, 2007.

[44] 錢明鴻, 吳翼貽, 廖崑亮, 成維華, “鋼軌輪廓方程式” , 中華技術, No. 103, pp. 134-145, 2014.

[45] UIC 861-3.0, “Standard 60 kg/m Rail Profile types”, International Union of Railways, Paris, 1981.

[46] BS EN 13674-1, “Railway application- Track-Rail”, Britain Standard Institute, 2003.

[47] GB2585, “Hot rolled steel rails for railway”, Guo-Biao Standard, 2007

[48] JIS E1101, “Flat bottom railway rails and special rails for switches and crossings of non-treated steel”, Japanese Industrial Standards, 2001.

[49] Rail, “Manual for Railway Engineering”, American Railway Engineering and Maintenance-of-Way Association (AREMA), Maryland, Lanham, p.4-1-1, 2014.

[50] AS 1085.1, “Steel rails. In: railway track materials”, Standards Australia, 2002.

[51] IS 3443, “Specification for crane rail section”, Bureau of India Standards, 1980.

[52] H. Fujimoto, “Influence of Arc and Conic Profile on Vehicle Dynamics: An Evaluation from Input Energy and Kinematic Oscillation”, The Japan Society of Mechanical Engineers, Vol. 64, No. 621, pp.1520-1527, 1998.

[53] J. Nakahashi, “車輪とレールの接触位置を探る”, Railway Research Review, Vol. 69, No. 4, pp. 12-15, 2012.

[54] Transit Cooperative Research Program Web-Only Document, “Wheel Profile Maintenance Guidelines”, Transportation Research Board of The National Academes, D-07/Task 20, 2014.

[55] R.R. John, “Nonholonomic Constraints”, American Journal of Physics, Vol. 34, pp. 406-408, 1966.

[56] M.R. Flannery, “The enigma of nonholonomic constraints”, American Journal of Physics, Vol.73, No.3, pp. 265-272, 2005.

[57] V.V. Schwartz, T.A. Alperovich, S.M. Palej, E.A. Petrov and G.B. Vilkovyskaja, “Illustrated Dictionary of Mechanical Engineering”, Springer, Netherlands, 2013.

[58] M. Muller, “The Relationship between the Rotation Possibilities between Femur and Tibia and the Lengths of Cruciate Ligaments”, Journal of Theoretical Biology, Vol. 161, No. 2, pp. 199-220,1993.

[59] T.M. Wu and C.K. Chen, “Computer-aided curvature analyses of planar four-bar linkage mechanism”, Applied Mathematics and Computation, Vol. 168, pp. 1175-1188, 2005.

[60] 江寶龍, “以瞬心線法分析與設計具滾滑動特性之四連桿機構”, 國立中山大學機械與機電工程學系碩士學位論文, 高雄, 中華民國, 2013.

[61] 張繼靖, “具非線性阻尼次懸吊系統之車輛行駛於不整軌道上的動態分析”, 國立台灣科技大學機械工程學系碩士論文, 台北, 中華民國, 2005.

[62] 曾右辰, “在彎道上的輪/軌系統動態研究”, 國立台灣科技大學機械工程學系碩士論文, 台北, 中華民國, 2005.

[63] 李文峰, “高速列車輪/軌互制行為之動態分析及驗證”, 國立台灣科技大學機械工程學系碩士論文, 台北, 中華民國, 2007.

[64] 劉家良, “軌道車輛動態響應之分析及驗證”, 國立台灣科技大學機械工程學系碩士論文, 台北, 中華民國, 2009.

[65] 李文峰, “具半主動式阻尼器之次懸吊系統的高速列車統行駛於曲線軌道上之動態分析”, 國立台灣科技大學機械工程學系博士論文, 台北, 中華民國, 2013.

[66] J.J. Kalker, “Survey of Wheel/Rail Contact Theories”, Vehicle System Dynamics, Vol. 8, pp. 177-358, 1979.

[67] W.M. Zhai, C.B. Cai and S.Z. Gu, “Coupling Model of Vertical and Lateral Vehicle/Track Interactions”, Vehicle System Dynamics, Vol. 26, pp. 61-79, 1996.

[68] V.K. Garg and R.V. Dukkipati, “Dynamics of Railway Vehicle Systems”, Academic Press INC., New York, 1984.

[69] K.L. Johnson and P.L. Vermeulen, “Contact of Non-Spherical Bodies Transmitting Tangential Forces”, Journal of Applied Mechanics (ASME), Vol. 31, No. 86, pp. 338-340, 1964.

[70] M.J. Nadal, “Locomotives à vapeur”, Collection encyclopédie scienti-fique, bibliothèque de mécanique appliquée et génie, Paris, 1908.

[71] D.J. Thompson, A.D. Monk-Steel and C.J.C. Jones, “Railway Noise: Curve Squeal”, Roughness Growth, Friction and Wear, 2003.

[72] 劉志賢, “軌道車輛行駛彎道之安全性能評估”, 大葉大學機械工程學系碩士論文, 彰化, 中華民國, 2004.

QR CODE