簡易檢索 / 詳目顯示

研究生: 陳秋吟
Ciou-yin Chen
論文名稱: 聚乳酸複合材料之改質特性分析與加工製程參數最佳化設計之研究
A Study on the Property Modification Analysis and Process Parameter Optimization Design of Polylactic Acid Composite Materials
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蘇德利
Te-li Su
蔡翔秦
Shoan Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 139
中文關鍵詞: 聚乳酸聚丁二酸丁二醇酯紫外線吸收劑受阻胺光穩定劑材料相容性耐候性雙螺桿混練熔融紡絲田口方法主成份分析反應曲面法粒子群演算法
外文關鍵詞: polybutylene succinate, UV absorbers, hindered amine light stabilizers, dual-screw, particle swarm
相關次數: 點閱:280下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係研究兩種生物可降解性高分子(聚乳酸及聚丁二酸丁二醇酯)之複合材料,並添加紫外線吸收劑及受阻胺光穩定劑延長複合纖維於戶外光照下之生命週期,結合多種品質工程上之多目標最佳化理論探討複合材料混練製程及熔融紡絲法加工製程對不同階段產物品質之影響,有助於提升可分解纖維之相關應用創新研究。
    本研究在環保聚乳酸複合纖維開發的規劃上分成二個階段,第一階段為「應用田口法結合主成份分析於聚乳酸改質製程」以探討不同材料的比例及雙螺桿混練製程溫度及剪切力對聚乳酸複合材料之機械強度影響,並探討聚乳酸複合材料的光學性質,聚乳酸改質前後的熱學性質、材料相容性、加工流動性及耐候性等重要性質。結果顯示,加入10wt%之聚丁二酸丁二醇酯可將聚乳酸的韌性增高20%,應用田口法結合主成份分析可降低彎曲強度27%、提升拉伸強度13.47%及衝擊強度22.95%。最後經過紫外線加速老化測試480小時後,其拉伸強度保留率有94.86%較純聚乳酸高出44%,其斷裂伸長率保留率有85.17%較純聚乳酸高出35.17%。
    第二階段為「應用反應曲面法與多目標粒子群演算法於聚乳酸複合纖維之製程研究」,將第一階段所得最適條件的聚乳酸複合材料酯粒,透過熔融紡絲法取得初生絲,探討其纖維抽絲製程中,紡絲溫度、紡嘴轉速及纖維捲取羅拉對初生絲之品質特性的影響。以反應曲面法設計針對不同品質特性建立其迴歸模型,再利用多目標粒子群演算法對這些品質特性模型及參數限制做最佳化處理後,由確認實驗可知聚乳酸/聚丁酸丁二醇酯之複合材料優於聚乳酸/聚己內酯之複合材料,其最佳複合纖維之丹尼數為40.07丹尼提升5.3%、纖維強度1.69(gf/d)提升42%及斷裂伸長率為176.04%提升27%。其最佳化迴歸模型預測誤差率為5.5%以內,證明其模型具有良好的再現性與準確率。


    This study discussed two types of biodegradable polymer composites (polylactic acid and polybutylene succinate). UV absorbers and hindered amine light stabilizers were added to prolong the life cycle of the composite fibers in outdoor lighting conditions. By using the multi-objective optimization theory of a variety of quality engineering approaches, this study examined the impact of the composite mixing process and melt spinning process on the product quality in different stages, in order to improve the innovative research relating to biodegradable fiber applications.
    This study divided the planning of the development of the environmentally friendly polylactic acid composite fibers into two stages. The first stage was “applying the Taguchi method and the principal component analysis in the polylactic acid property modification process”. The aim was to discuss the impact of different material proportions, dual-screw mixing process temperature, and shearing force on the mechanical strength of polylactic acid composite materials. Moreover, this study explored major properties of polylactic acid composite materials, such as the optical properties, the thermal properties of polylactic acid before and after modification, material compatibility, processing flowability and weather resistance. The results suggested that, the addition of 10 wt% polybutylene succinate can increase the toughness of polylactic acid by 20%. Taguchi method and the principal component analysis can improve the bending strength by 27%, the tensile strength by 13.47% and the impact strength by 22.95%. Finally, after 480 h of UV aging acceleration test, the tensile strength retention rate was 94.86%, which was higher than the polylactic acid by 44%. The break extension retention rate was 85.17%, which was higher than the pure polylactic acid by 35.17%.
    The second stage was “applying the response surface methodology and multi-objective particle swarm algorithm in the polylactic acid composite fiber process”. The aim was to obtain the newly spun threads by melt spinning method from the polylactic acid composite material acetate tablets under the optimal conditions of the first stage. The impact of spinning temperature, spinneret rotation speed, fiber wrapping roller on the newly spun thread quality characteristics in the fiber spinning process were also discussed. The response surface methodology was applied to establish the regression models of different quality characteristics before using the multi-objective particle swarm algorithm for the optimization processing of these quality characteristic models and parameter constraints. The experiments found that the polylactic acid/polyacid butanediol ester composite material was better than the polylactic acid/polycaprolactone composite material. The optimal composite fiber denier was 40.07 with an improvement by 5.3%. The fiber strength was 1.69(gf/d) with an improvement by 42% and elongation at break was 176.04% with an improvement by 27%. The optimal regression model prediction error rate was 5.5%, suggesting the model has a good reproductability and accuracy.

    摘要I ABSTRACTIII 致謝V 目錄VII 圖索引XII 表索引XVI 第一章 緒論1 1.1.前言1 1.2.研究動機與目的1 1.3.文獻回顧2 1.3.1.聚乳酸複合材料2 1.3.2.多目標最佳化6 1.4.研究流程9 第二章 研究規劃與原理10 2.1.研究範圍10 2.2.材料概述10 2.2.1.聚乳酸10 2.2.2.聚丁二酸丁二醇酯13 2.2.3.紫外線吸收劑13 2.2.4.受阻胺光穩定劑14 2.3.加工設備16 2.3.1.雙螺桿混練機16 2.3.2.射出成型機18 2.3.3.熔融紡絲機19 2.4.材料分析與原理20 2.4.1.熱重損失分析20 2.4.2.熱示差分析22 2.4.3.可見光/紫外光光譜23 2.4.4.熔融指數24 2.4.5.材料彎曲試驗25 2.4.6.材料拉伸試驗26 2.4.7.材料衝擊試驗29 2.4.8.紫外光耐候試驗30 2.4.9.掃描式電子顯微鏡33 2.4.10.能量分散光譜儀35 第三章 多重品質分析與最佳化理論36 3.1.田口法36 3.1.1.直交表36 3.1.2.訊號雜訊比37 3.1.3.變異數分析39 3.2.因素分析適配性41 3.2.1.KMO檢驗41 3.2.2.Bartlett球型度檢驗42 3.3.主成份分析43 3.3.1.主成份分析原理43 3.3.2.主成份分析之數學模型45 3.4.反應曲面法46 3.4.1.迴歸模型46 3.4.2.殘差值49 3.4.3.Box-Behnken實驗設計49 3.4.4.迴歸模型的配適性51 3.5.多目標粒子群演算法54 3.5.1.數學模式55 3.5.2.多目標問題的數學模型58 第四章 應用田口法結合主成份分析於聚乳酸改質製程之研究59 4.1.實驗規劃59 4.1.1.實驗參數設計61 4.2.實驗結果與分析62 4.2.1.可見光-紫外光光譜62 4.2.2.熱重損失分析63 4.2.3.熱示差分析與相容性64 4.2.4.熔融指數67 4.2.5.耐候試驗69 4.2.6.品質特性與分析72 4.3.最佳化設計理論分析與結論81 4.3.1.主成份分析有效數據81 4.3.2.品質特性正規化82 4.3.3.多重品質特性分析83 4.4.確認實驗89 第五章 應用反應曲面法與粒子群演算法於聚乳酸複合纖維製程之研究90 5.1.實驗規劃90 5.1.1.實驗材料92 5.1.2.實驗參數設計92 5.2.實驗結果與分析94 5.2.1.纖維微觀結構94 5.2.2.模型適配性96 5.3.最佳化設計理論分析105 5.3.1.品質特性迴歸模型105 5.3.2.最佳化結果107 5.4.纖維應用與比較109 第六章 研究總結與討論110 6.1.複合材料性質110 6.2.多目標最佳化系統111 參考文獻114

    [1]K. Gaurav, S. P. Singh and R. Auras, “Evaluation of Compostability of Commercially Available Biodegradable Packages in Real Composting Conditions” , AIChE Annual Meeting, pp. 9485-9502, 2005.
    [2]R. A. Auras, L. T. Lim and S. E. M. Selke, H. Tsuji, Poly(lactic acid): Synthesis, Structures, Properties, Processing,and Applications; Wiley: New Jersey, 2010.
    [3]A. K. Schneider (Ethicon Co.), US 3636956, 1972.
    [4]D. Wasserman et al (Ethicon Co.), US3792010, 1974.
    [5]http://www.natureworksllc.com/
    [6]K. Oksman, M. Skrifvars and J. F. Selin, “Natural Fibers as Reinforcement in Polylactic Acid(PLA) Composites”, Composites Science and Technology, Vol. 63, pp. 1317-1324, 2003.
    [7]H. L. Seung and W. Siqun, “Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-based Coupling Agent”, Composites: Part A, Vol. 37, pp. 80-91, 2006.
    [8]M. Todo, K. Arakawa, H. Tsuji and Y. Takenoshita, “Fracture Micromechanisms of Bioabsorbable PLLA/PCL Polymer Blends”, Engineering Fracture Mechanics, Vol. 74, pp. 1872-1883, 2007.
    [9]T. Yokohara and M. Yamaguchi, “Structure and Properties for Biomass-based Polyester Blends of PLA and PBS”, European Polymer Journal, Vol. 44, pp. 677-685, 2008.
    [10]B. X. Li, “Effect of the Addition of 4,4-methylene Diphenyl Diisocyanate and Silicate on the Thermal and Mechanical Properties of Polylactide”, National Taiwan University of Science and Technology, Polymer Engineering, 2008.
    [11]Y. F. Huang, “Transparent Toughening of PLA/PMMA Blend by Melt Compounding”, Tunghai University, Chemical and Materials Engineering, 2010.
    [12]H. Li and M. A. Huneault, “Comparison of Sorbitol and Glycerol as Plasticizers for Thermoplastic Starch in TPS/PLA Blends”, Applied Polymer Science, Vol.119, pp. 2439-2448, 2010.
    [13]K. M. Nampoothiri, N. R. Nair, R. P. John, “An Overview of the Recent Developments in Polylactide (PLA) Research”, Bioresource Technology, Vol.101, pp. 8493-8501, 2010.
    [14]F. Stoyko, “Structure Development During Polymer Processing”, Kluwer Academic Publisher, Vol.370, pp. 660-667, 1999.
    [15]L. T. Lim et al., “Processing Technologies for Poly(lactic acid) Progress”, Polymer Science 33, pp. 820-852, 2008.
    [16]L. W. Chen, “Effects of the Mold Temperature Control in the Compacting Stage on the Superstructure of the Injection Molded PLA, PLA/KF, and PLA/MMT Parts”, National Chiao Tung University, Mechanical Engineering, 2009.
    [17]I. C. Wang, “The Studies of Plasma Modified Poly(lactic-co-glycolic acid) Copolymer and Poly(methyl methacrylate)”, National Taiwan University of Science and Technology, Chemical Engineering, 2010.
    [18]K. An, H. Liu, S. Guo, D. N. T. Kumar and Q. Wang, “Preparation of Fish Gelatin and Fish Gelatin/Poly(l-lactide) Nanofibers by Electrospinning”, International Journal of Biological Macromolecules, Vol.47, pp. 380–388, 2010.
    [19]J. C. Su, “Application of Taguchi Method in the Design of High Power Li-Battery Header”, National Kaohsiung First University of Science and Technology, Mechanical and Automation Engineering, 2004.
    [20]W. S. Huang, “A Study of Plastic Injection Molding Optimization Process Using Taguchi Method and PCA”,Da Yeh University, Industrial Engineering and Technology Management, 2006.
    [21]M. D. Jean, J. T. Wang, “Using a Principal Components Analysis for Developing a Robust Design of Electron Beam Welding”, International Journal of Advanced Manufacturing Technology, Vol.28, pp. 882-889, 2006.
    [22]L. Tseng, “Solving Multiple Response Simulation Models Using Response Surface Methodology - A Case Study on An IC Ink Marking Machine”, National Cheng Kung University, Institute of Manufacturing Information and Systems, 2000.
    [23]C. F. Hsu, “A Combination of Genetic Algorithm and Response Surface Methodology to Find the Optimal Parameter of Multiple Quality Characteristics Process”, National Yunlin University of Science and Technology”, Industrial Management, 2000.
    [24]Y. T. Chen, “Investigation of the Effect of Water Quality Composition on Corrosivity of Drinking Water Using Response Surface Methodology”, Tamkang University, Water Resources and Environmental Engineering, 2005.
    [25]S. W. Yeh, “Multi-objective Inventory Classification Using Particle Swarm Optimization”, Yuan Ze University, Industrial Engineering and Management, 2004。
    [26]G. C. Luh and C. Y. Lin, “Optimal Design of Truss-structures Using Particle Swarm Optimization”, Computers and Structures, Vol.89, pp. 2221-2232, 2011.
    [27]R. A. Auras et al., “Poly(lactic Acid): Synthesis, Structures, Properties, Processing, and Applications”, Wiley, p. 99, 2010.
    [28]H. S. Kim, H. J. Kim, J. W. Lee and I. G. Choi, “Biodegradability of Bio-flour Filled Biodegradable Poly(butylene succinate) Bio-composites in Natural and Compost Soil”, Polymer Degradation and Stability, Vol.91, pp. 1117-1127, 2006.
    [29]Y. Tachibana, “Cellulose Acetate Butyrate as Multifunctional Additive for Poly(butylen succinate) by Melt Blending: Mechanical properties, Biomass Carbon Ratio, and Control of Biodegradability”, Polymer Degradation and Stability, Vol.95, pp. 1406-1413, 2010.
    [30]T. Kurumada, H. Ohsawa and T. Yamazaki “Synergism of Hindered Amine Light Stabilizers and UV-Absorbers”, Polymer Degradation and Stability, Vol.19, pp. 263-272, 2008.
    [31]D. J. Zuilichem, E. Kuiper, W. Stolp, T. Jager, “Mixing Effects of Constituting Elements of Mixing Screws in Single and Twin Screw Extruders”, Powder Technology, Vol.106, pp. 147-159, 1999.
    [32]H. Rees, “Understanding Injection Molding Technology”, Cincinnati: Hanser/Gardner Publications, Inc., 1995.
    [33]姚興川,人造纖維原理(理化與紡絲),滄海出版社,1972。
    [34]莊東漢,材料分析與檢測實驗,五南出版社,2006。
    [35]A. V. Shenoy and D. R. Saini, “Thermoplastic Melt Rheology and Processing”, Vol.139, Marcel Dekker, New York, 1996.
    [36]詹添印,機械材料試驗,全華圖書,民國98年。
    [37]X. Yang, X. Ding, “Prediction of Outdoor Weathering Performance of Polypropylene Filaments by Accelerated Weathering Tests”, Geotextiles and Geomembranes, Vol.24, pp. 103-109, 2006.
    [38]鮑忠興,近代穿透式電子顯微鏡實務,滄海書局,2008。
    [39]P. J. Ross, “Taguchi Techniques for Quality Engineering”, New York: McGraw-Hill, 1996.
    [40]李輝煌,田口方法-品質設計的原理與實務,第四版,高立圖書有限公司, 2012。
    [41]H. F. Kaiser, “An Index of Factorial Simplicity”, Psychormetrika, Vol. 39, pp. 31-36, 1974.
    [42]G. W. Snedecor, W. G. Cochran, “Statistical Methods”, 8th Edition, 1989.
    [43]A. J. Richard and W. Dean, “Applied Multivariate Statistical Analysis”, 5th edition, 2002.
    [44]S. Liu, Y. Fang, M. Lv, S. Wang, L. Chen, “Optimization of the Production of Organic Solvent-stable Protease by Bacillus Sphaericus DS11 with Response Surface Methodology”, Bioresource Technology, Vol.101, pp. 7924-7929.
    [45]R. H. Myers, D. C. Montgomery, “Response Surface Methodology: Process and Product in Optimization Using Designed Experiments”, New York: Wiley, 1995.
    [46]D. R. Anderson, D. J. Sweeney, T. A. Williams, “Statistics for Business and Economics”, South-Western, 8ht edition, pp. 485-633.
    [47]J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, IEEE, Neural Networks IV. Vol. 4, pp. 1942-1948, 1995.
    [48]J. Kennedy, R. C. Eberhart and Y. Shi, “Swarm Intelligence”, San Francisco: organ Kaufmann, 2001.
    [49]R. C. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization”, in Proc. Congress on Evolutionary Computation (CEC), Vol. 1, pp. 84–88, 2000.
    [50]J. S. Arora, “Introduction to Optimum Design”, 2nd Edition, Elsevier, 2004.
    [51]R. C. Eberhart and Y. Shi. “Particle Swarm Optimization: Developments, Applications and Resources”, in Proc. Congress on Evolutionary Computation, Vol 1, pp. 27-30, 2001.
    [52]Y. H. Kuo, “Miscibility in Amorphous Phase and Morphology in Crystalline Phase of Aryl Polyester Blends”, National Cheng Kung University, 2002.
    [53]日本ユニチカファイバ-株式會社資料提供,聚乳酸纖維「Terramac」的LCA之研究與商品運用的現狀,染化雜誌,第264期,2006。
    [54]S. J. Leon, “Linear Algebra with Applications”, 7th Edition, Prentice Hall.

    QR CODE