簡易檢索 / 詳目顯示

研究生: 陳駿瑜
Chun-Yu Chen
論文名稱: 考慮地下水位之砂質邊坡快速評估方法與安全性分析
Rapid Assessment Method and Analysis of Safety for Sandy Slopes with Considering Groundwater Level
指導教授: 李咸亨
Hsien-Heng Lee
口試委員: 陳堯中
Yao-Chung Chen
陳志南
Chee-Nan Chen
蔡光榮
Kuang-Jung Tsai
周南山
Nan-Shan Chou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 166
中文關鍵詞: 地下水位安全係數邊坡監測指標坡趾水平位移
外文關鍵詞: groundwater level, safety factor, slope monitoring indices, horizontal displacement of slope toe
相關次數: 點閱:349下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 邊坡內部地下水位之變化是影響邊坡穩定安全的重要因素,也是邊坡監測的主要參數之一。但是,地下水位與邊坡安全係數之關係,以及其對於邊坡變形之影響,卻鮮少被詳細檢討。現有各種監測儀器管理值大多僅以經驗值代表邊坡潛在危險性,只能概略判斷此時邊坡是否可能在滑動,並且未明確指出對應之安全係數和變位大小。
    本研究採用FLAC程式中的莫耳庫侖塑性模式,撰寫分析邊坡土壤之應力∼應變關係程式,另以Darcy定律撰寫另一個穩態滲流水之地下水位面(亦稱為自由水位面)分析程式。然後,以該水位面為準,分別進行STABLE6分析以及另一個以FISH程式語言所撰寫的邊坡內部水平位移量分析,以探討砂質邊坡內部地下水位對於整體穩定性之影響。
    本研究成果獲知:各種內摩擦角不同的砂質邊坡隨著地下水位升高時,安全性逐漸減少,且在達到臨界地下水位後,安全性陡降。此成果亦可以正規化參數 與 表達之。因此,本文進一步建立一個合理且可快速使用於砂質邊坡的邊坡安全評估圖表,也可用於缺乏詳細土壤性質資料的現地邊坡之快速安全評估,解決盲從檢測之虞。


    The variation of the groundwater level in a slope is the major influence factor for the slope safety. It is also a key parameter used for monitoring a slope stability problem. However, the relationship between the groundwater level and the slope safety is seldom investigated. So, does the displacements of a slope in unstable condition. Most indices used for the slope stability monitoring are based upon experience and are only related to the dangerous potential. They never point out the values of safety factor and displacement corresponding to the slope movement.
    The stress-strain relationship of slopes in this study is analyzed by using the “Mohr-coulomb Plasticity Model” defined in the program FLAC. Darcy’s Law is also employed to write another program to analyze the ground water surface inside a slope, which is also named as phreatic surface. This phreatic surface is then used in both slope stability analysis (by using STABLE6) and displacements evaluation (written by using a FISH language) in order to obtain the influence of the groundwater level on the stability of the sandy slopes.
    The results in this study show that the safety factor of slopes decrease as the groundwater level increase in different internal friction angles of sandy slope. And the safety factors of all kinds sandy slopes drop down rapidly once the critical water level is approached. This relationship could be presented by normalized parameters of FS/tan and Hw/H, as well. Therefore, rapid assessment charts for evaluating the stability of sandy slopes were established in this study which can also be applied to most in situ slopes with unknown soil properties.

    [本文目錄] 第一章、緒論...........................................................1 1.1前言...............................................................1 1.2研究動機與目的.....................................................1 1.3研究方法與內容.....................................................2 第二章、邊坡安全評估...................................................4 2.1極限平衡法.........................................................5 2.1.1一般切片法.....................................................5 2.1.2 Bishop簡化切片法..............................................7 2.1.3 Janbu簡化分析法...............................................8 2.1.4 Spencer分析法.................................................9 2.1.5 Cousins分析法................................................11 2.1.6小結..........................................................12 2.2極限分析法........................................................13 2.3數值分析法........................................................14 2.3.1有限差分法....................................................14 2.3.2有限元素法....................................................16 2.3.3數值分析之安全係數分析法......................................18 2.3.4小結..........................................................21 2.4邊坡安全監測指標..................................................22 2.4.1監測指標的發展................................................22 2.4.2通用類及設計類監測建議表......................................23 2.5準則式邊坡安全評估法..............................................23 2.5.1藤原明敏危險度評估法..........................................24 2.5.2日本點數法....................................................25 2.5.3香港GEO評估法.................................................25 2.5.4山坡地社區安全評估方法........................................26 2.5.5小結..........................................................27 2.6邊坡地下水流分析..................................................27 2.6.1 Dupuit滲流方程式.............................................28 2.6.2 Schaffernak & Van Iterson滲流近似解..........................29 2.6.3 L. Casagrande解..............................................30 第三章、分析方法與參數研究............................................32 3.1研究方法概述......................................................32 3.2水位分析方法......................................................33 3.3變形分析方法......................................................38 3.4安全係數分析......................................................45 3.5土壤參數及邊坡幾何參數............................................45 第四章、地下水位與坡趾位移及安全係數關係..............................50 4.1三相分析圖........................................................50 4.2 正規化分析圖.....................................................51 4.3邊坡內部變形與變位................................................52 4.4臨界水位現象......................................................53 4.5連續性破壞現象....................................................55 4.6地下水位、坡面滲流與安全係數之關係................................56 4.7坡度對安全係數之影響..............................................59 4.8 安息角與安全角...................................................60 4.9坡趾位移與地下水位................................................62 4.10案例比較.........................................................63 第五章、安全性指標定義................................................65 5.1常用規範定義......................................................65 5.2分析曲線特徵點研析................................................66 5.2.1分析圖探討....................................................66 5.2.2曲線特徵點....................................................68 5.3初始變化點定義法..................................................68 5.3.1曲線特性分析..................................................68 5.3.2初始變化點行動準則............................................70 5.3.3坡面滲流與第一階轉折點........................................72 5.4警戒區間定義法....................................................74 5.4.1三相分析圖警戒區間............................................74 5.4.2正規化分析圖警戒區間..........................................75 5.4.3行動準則之訂定................................................76 5.5運用範例..........................................................79 5.5.1三相分析圖運用................................................79 5.5.2正規化分析圖運用..............................................80 5.5.3初始變化點ICP指標運用.........................................81 5.5.4警戒區間指標運用..............................................82 第六章、總結..........................................................83 6.1結論..............................................................83 6.2建議..............................................................85 參考文獻..............................................................86 [表目錄] 表2.1、極限平衡法的靜力平衡狀況..............................................92 表2.2、長期維護階段山坡地監測系統建議採用之儀器..............................92 表2.3、位移速率與邊坡穩定性判斷建議表........................................93 表2.4、UT日本地滑對策技術協會................................................93 表2.5、山坡地工程監測參考管理值..............................................94 表2.6、簡易監測設施之內容....................................................95 表2.7、山坡地社區安全監測警戒值-通用類建議表.................................95 表2.8、山坡地社區安全監測警戒值-設計類建議表.................................96 表2.9、日本點數法影響因子評估標準表..........................................96 表2.10、日本點數法陡坡地危險程度判定準則.....................................97 表2.11、邊坡/擋土設施登記篩選表..............................................97 表2.12、GEO邊坡危險徵兆檢視表................................................98 表2.13 、GEO邊坡崩塌生命損失後果類別範例.....................................99 表2.14 、GEO邊坡篩選評分分級表...............................................99 表2.15 、GEO邊坡評分表範例(土壤挖方為例)..................................100 表2.16、RASS系統基本檢視表內容與探討........................................101 表2.17、RASS系統日常檢視表內容與探討........................................102 表2.18、RASS系統分數準則分級................................................104 表2.19、RASS系統分數準則行動等級對照表......................................105 表2.20、RASS系統潛能準則表..................................................105 表3.1、各邊坡傾角與分析摩擦角之設定.........................................106 表3.2、Bowles及Das整理之典型彈性模數Es值....................................106 表3.3、本研究以為0.3推算之分析用土壤G、B值................................106 表4.1、各類砂質邊坡臨界地下水位.............................................106 表4.2、各類砂質邊坡臨界水位比...............................................107 表5.1、各類砂質邊坡常用警戒安全係數與對應之地下水位.........................107 表5.2、起始變化點及對應地下水位、安全係數分析結果...........................108 表5.3、砂質邊坡第一階段安全係數下降曲線模擬函數.............................108 表5.4、砂質邊坡摩擦角與初始變點安全係數關係.................................109 表5.5、三相分析圖警戒區間下邊界.............................................109 表5.6、砂質邊坡警戒區間(水位比型式).......................................109 表5.7、警戒區間行動原則.....................................................110 表5.8、砂質邊坡行動點水位比(for 0.5m buffer)..............................110 表5.9、砂質邊坡行動點水位及水位比換算(for 0.5m~3.0m)......................111 [圖目錄] 圖2.1、一般切片法 (a)切片示意圖 (b)第n個切片及作用力........................112 圖2.2、Bishop簡化法(a)第n個切片圖 (b)力平衡圖...............................113 圖2.3、Janbu簡化法切片圖....................................................114 圖2.4、Janbu簡化法修正係數..................................................114 圖2.5、切片滑動面與力平衡圖.................................................115 圖2.6、邊坡穩定圖...........................................................116 圖2.7、破壞土體與作用力示意圖...............................................117 圖2.8、破壞土體平衡分析圖...................................................117 圖2.9、應力合力方向.........................................................117 圖2.10、Cousins穩定圖範例...................................................118 圖2.11、有限差分法網格......................................................118 圖2.12、莫耳圓與莫耳庫侖破壞準則(1).........................................119 圖2.13、莫耳圓與莫耳庫侖破壞準則(2) (A)莫耳圓上二個潛在滑動面位置 (B)二潛在滑動 面方向..............................................................119 圖2.14、FSURUminURU<1.0之滑動面軌跡.........................................120 圖2.15、一般邊坡地下水位設定................................................120 圖2.16、Dupuit非拘限流土層內二維流動示意圖..................................120 圖2.17、Dupuit’s formula分析土壩示意圖.....................................121 圖2.18、Schaffernak & Van Itrerson無尾水土壩滲流示意圖(摘自[6]).............121 圖2.19、L. Casagrande土石壩滲流分析示意圖...................................122 圖2.20、Gilboy(1933)建議之L. Casagrande滲流分析圖...........................122 圖3.1、分析流程.............................................................123 圖3.2、本研究之三角形元素(a)FLAC中使用之四邊形元素,(b)典形三角形元素及其速度向 量(Velocity vector),(c)結點力向量(Nodal force vector)...............123 圖3.3、不平衡水流Qratio之變化歷程圖.........................................124 圖3.4、地下水分析inflow及outflow趨勢圖......................................124 圖3.5、水位線分析流程.......................................................125 圖3.6、分析網格.............................................................125 圖3.7、邊坡幾何參數設定方式.................................................125 圖3.8、Mohr-Coulomb Model...................................................126 圖3.9、Mohr-Coulomb Model定義流動法則平面...................................126 圖3.10、水位設定示意圖......................................................127 圖3.11、坡頂右邊界3H水位分析圖..............................................127 圖3.12、坡頂後右邊界H水位分析圖.............................................127 圖3.13、邊界位置與穩態地下水位線之分析......................................128 圖3.14、比重對位移影響比較圖................................................128 圖3.15、不同右側邊界對坡趾水平位移之影響比較圖..............................129 圖3.16、不同右側邊界坡趾水平位移等值線圖....................................129 圖3.17、不同底部邊界對坡趾水平位移之影響比較圖..............................130 圖4.1、坡度3:2且坡高5m之三相分析圖..........................................131 圖4.2、坡度3:2且坡高10m之三相分析圖.........................................131 圖4.3、坡度3:2且坡高15m之三相分析圖.........................................132 圖4.4、坡度2:1且坡高5m之三相分析圖..........................................132 圖4.5、坡度2:1且坡高10m之三相分析圖.........................................133 圖4.6、坡度2:1且坡高15m之三相分析圖.........................................133 圖4.7、坡度3:1且坡高5m之三相分析圖..........................................134 圖4.8、坡度3:1且坡高10m之三相分析圖.........................................134 圖4.9、坡度3:1且坡高15m之三相分析圖.........................................135 圖4.10、坡度3:2且坡高5m之正規化分析圖.......................................135 圖4.11、坡度3:2且坡高10m之正規化分析圖......................................136 圖4.12、坡度3:2且坡高15m之正規化分析圖......................................136 圖4.13、坡度2:1且坡高5m之正規化分析.........................................137 圖4.14、坡度2:1且坡高10m之正規化分析圖......................................137 圖4.15、坡度2:1且坡高15m之正規化分析圖......................................138 圖4.16、坡度3:1且坡高5m之正規化分析圖.......................................138 圖4.17、坡度3:1且坡高10m之正規化分析圖......................................139 圖4.18、坡度3:1且坡高15m之正規化分析圖......................................139 圖4.19、邊坡內部水平位移等值線圖(Slope 3:1, H=5m, HURUw URU= 3m, FS=1.25)...140 圖4.20、邊坡內部位移向量示意圖(Slope 3:1, H=5m, HURUw URU= 3m, FS=1.25).....140 圖4.21、邊坡內部水平位移等值線圖(Slope 3:1, H=5m, Hw=3.5m, FS=0.6)..........140 圖4.22、邊坡內部位移向量示意圖(Slope 3:1, H=5m, Hw = 3.5m, FS=0.6)..........140 圖4.23、邊坡內部變形圖(Slope 3:1, H=5m, Hw = 3.5m, 原始比例)................141 圖4.24、邊坡內部變形圖(Slope 3:1, H=5m, Hw = 3.5m, 放大10倍)................141 圖4.25、水位線與最小安全係數弧..............................................141 圖4.26、水位線與坡趾滲流面..................................................142 圖4.27、連續性破壞示意圖....................................................142 圖4.28、不同坡高坡面滲流長度與地下水位比關係圖(Slope 3:1).................143 圖4.29、不同坡高坡面滲流長度與地下水位比關係圖(Slope 2:1).................143 圖4.30、不同坡高坡面滲流長度與地下水位比關係圖(Slope 3:2).................144 圖4.31、低水位最小安全係數滑動面............................................144 圖4.32、中水位未出現坡面滲流時最小安全係數滑動面............................145 圖4.33、坡面滲流出現後最小安全係數滑動面....................................145 圖4.34、高水位且坡面滲流出現後最小安全係數滑動面............................146 圖4.35、高水位且坡面滲流出現後坡趾部位各滑動面安全性........................146 圖4.36、坡度3:1及坡高5m之地下水位與安全係數關係.............................147 圖4.37、不同坡度下安全係數與地下水位之關係..................................147 圖4.38、坡面滲流分析圖......................................................148 圖4.39、砂質邊坡各坡度滲流長度與水位關係圖..................................148 圖4.40、砂質邊坡初始安全性與摩擦角之關係....................................149 圖4.41、邊坡坡趾位移與邊坡內部地下水位關係圖................................149 圖5.1、三相分析圖上之特徵點.................................................150 圖5.2、正規化分析圖上特徵點.................................................150 圖5.3、正規化曲線模擬函數示意圖.............................................151 圖5.4、模擬曲線圖(Slope2:1,H=5m,初始下降曲線)...........................151 圖5.5、Slope 3:2邊坡初始變化點安全係數-地下水位關係圖.......................152 圖5.6、Slope 2:1邊坡初始變化點安全係數-地下水位關係圖.......................152 圖5.7、Slope 3:1邊坡初始變化點安全係數-地下水位關係圖.......................153 圖5.8、初始變化點之安全係數-地下水位-土壤摩擦角三維關係圖...................153 圖5.9、砂質邊坡平時行動準則圖...............................................154 圖5.10、正規化分析曲線與第一轉折點示意圖....................................154 圖5.11、地趾位移-地下水位關係圖與第一轉折點.................................155 圖5.12、坡高5m邊坡第一轉折點安全係數與土壤摩擦角關係圖......................155 圖5.13、坡高10 m邊坡第一轉折點安全係數與土壤摩擦角關係圖....................156 圖5.14、坡高15 m邊坡第一轉折點安全係數與土壤摩擦角關係圖....................156 圖5.15、坡高5m邊坡之傾角與第一轉折點安全係數關係............................157 圖5.16、坡高10m邊坡之傾角與第一轉折點安全係數關係...........................157 圖5.17、坡高15m邊坡之傾角與第一轉折點安全係數關係...........................158 圖5.18、坡度3:1之三相分析圖中警戒區間上邊界.................................158 圖5.19、坡度2:1之三相分析圖中警戒區間上邊界.................................159 圖5.20、坡度3:2之三相分析圖中警戒區間上邊界.................................159 圖5.21、坡度2:1正規化分析圖警戒區間示意圖...................................160 圖5.22、人員撤離時間與地下水位緩衝空間關係圖................................160 圖5.23、坡度3:1坡高5m砂質邊坡警戒區間與行動水位圖...........................161 圖5.24、坡度3:1坡高10m砂質邊坡警戒區間與行動水位圖..........................161 圖5.25、坡度3:1坡高15m砂質邊坡警戒區間與行動水位圖..........................162 圖5.26、坡度2:1坡高5m砂質邊坡警戒區間與行動水位圖...........................162 圖5.27、坡度2:1坡高10m砂質邊坡警戒區間與行動水位圖..........................163 圖5.28、坡度2:1坡高15m砂質邊坡警戒區間與行動水位圖..........................163 圖5.29、坡度3:2坡高5m砂質邊坡警戒區間與行動點水位圖.........................164 圖5.30、坡度3:2坡高10m砂質邊坡警戒區間與行動點水位圖........................164 圖5.31、坡度3:2坡高15m砂質邊坡警戒區間與行動點水位圖........................165 圖5.32、坡度3:1砂質邊坡警戒區間與行動水位比圖...............................165 圖5.33、坡度2:1砂質邊坡警戒區間與行動點水位比圖.............................166 圖5.34、坡度3:2砂質邊坡警戒區間與行動點水位比圖.............................166

    1.洪如江,「賀伯颱風、新中橫公路與坍方及土石流災害」,地工技術,第57期,第25-30頁(1996)。
    2.李咸亨、吳泰慶,「莫拉克風災之危險邊坡預警省思及整治對策」,營建知訊,第324期,第36-41頁(2010)。
    3.李咸亨、潘禮門、李正庸、李滄涵、賴典章、徐靜淵、蔡光榮、凌德麟、徐錠基、陳曉偉、沈英標,「山坡地雜項工程技術及施工計劃指導準則」,研究報告,內政部營建署(1990)。
    4.Fellenius, W., Erdstatische Berechnungen, rev. ed., W. Ernst u. Sons, Berlin (1927).
    5.Taylor, D. W., “Stability of earth slopes”, Journal of the Boston Society of Civil Engineers, Vol.24, pp.197-246 (1937).
    6.Harr, M. E., “Groundwater and Seepage”, Mcgraw-Hill, New York (1962).
    7.Bishop, A. W., “The Use of the Slip Circle in the Stability Analysis of Slopes”, Géotechnique, Vol.5, pp.7-17 (1955).
    8.Fredlund, D. G.. and Krahn, J., “Comparison of slope stability methods of analysis”, Canadian Geotechnical Journal, Vol.14, pp.429-439 (1977).
    9.Whitman, R.V. and Bailey, W. A., “Use of computers for slope stability analysis”, Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol.93(4), pp.475-498 (1967).
    10.Janbu, N., Bjerrum, L. and Kjaernsli, B., “Soil mechanics applied to some engineering problems”, Norwegian Geotechnical Institute Publication, No.16, pp.5-26 (1956).
    11.Abramson, L.W., Lee, T.S., Sharma, S. and Boyce, G.M.., “Slope Stability and Stabilization Methods”, John Wiley and Sons, N.Y. (1996).
    12.Spencer, E., “A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces”, Géotechnique, Vol.17, No.1 , pp.11-26 (1967).
    13.Bishop, A. W. and Morgenstern, N., “Stability Coefficients for Earth Slopes”, Geotechnique, Vol.10, No. 4, pp.129-150 (1960).
    14.Cousins, B. F., “Stability charts for simple earth slopes”, Journal of the Geotechnical Engineering Division, ASCE, Vol.104(GT2), pp.267-279 (1978).
    15.Michalowski, R. L., “Slope stability analysis:a kinematical approach”, Géotechnique, Vol.45, No.2, pp.283-293 (1995).
    16.Chen, W. F. “Limit analysis and soil plasticity” Elsevier, New York (1975).
    17.Chen, W. F., Giger, M. W. and Fang, H. Y. “On the limit analysis of stability of slopes.” Soils Foundation, Vol.9, No.4, pp.23-32 (1969).
    18.Yu, H. S., Salgado, R., Sloan, S. W. and Kim, J. M. “Limit analysis versus limit equilibrium for slope stability”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.124, No.1, pp.1-11 (1998).
    19.陳信吉、張主聖,「Marc有限元素實例分析」,全華圖書公司(2006)。
    20.ITASCA Consulting Group, Inc., FLAC;Fast Lagrangian, Analysis of Continua, Version 4.0, Vol.I-IV (2000).
    21.Huang, S. L. and Yamasaki, K., “Slope failure analysis using local minimum factor-of-safety approach”, Journal of Geotechnical Engineering, ASCE, Vol.119, No.12, pp.1974-1987 (1993).
    22.Matsui, T. and San, K. C., “Finite element slope stability analysis by shear strength reduction technique”, Soils Foundation, Vol.32, No.1, pp.59-70 (1992).
    23.Dawson, E. M., Roth, W. H. and Drescher, A., “Slope stability analysis by Strength Reduction”, Géotechnique, Vol.49, No.6, pp.835-840 (1999).
    24.Sarma, S. K., “Stability analysis of embankments and slopes”, Journal of Geotechnical Engineering Division, ASCE, Vol.105, No.12, pp.1511-1524(1974).
    25.范嘉程、馮道偉,「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,第61-74頁(2003)。
    26.高速道路調查會,”地すべり危險における動態觀測施工に關する研究(その3)”,日本道路公團委託,東京(1989)。
    27.地すべリ對策技術協會,”地すべリ對策技術設計實施要領”,Vol.2,東京(1978)。
    28.李咸亨,坡地社區安全居住手冊,內政部營建署,台北市(1998)。
    29.內政部營建署營建自動化專案計畫報告,「坡地社區開發安全監測手冊」,內政部營建署,台北市,(1999)。
    30.蘇世豐、莊睦雄,「山坡地社區簡易監測方法之應用研究(I)」, 國科會專題研究報告,NSC90-2625-Z-236-001,台北市(2002)。
    31.林美聆、秦中天,「山坡地社區開發邊坡穩定工法技術現況調查與分析」,編號MOIS881013-2,內政部建築研究所專題研究報告,台北市(1999)。
    32.田永銘,「山坡地災害緊急減災措施之研究」,編號MOIS891007,內政部建築研究所專題研究報告,台北市(2000)。
    33.李咸亨、林熺麟,「坡地住宅地區防災預警觀測警戒行動及疏散準則之研擬」,九十二年度防災國家型科技計畫,編號092301070000G1025,台北市,(2004)。
    34.藤原明敏,「地滑調查與解析」,理工圖書會社(1970)。
    35.The Japanese Geotechnical Society, “Manual for Zonation on Areas Susceptible to Rain-induced Slope Failure”, The Japanese Geotechnical (1997).
    36.Geotechnical Control Office (GCO), “Geotechnical Manual For Slope”, Hong Kong (1984).
    37.吳俊傑,「坡地建築防災指標與系統研究」,碩士論文,國立台灣科技大學,台北市(1999)。
    38.廖郁玟,「山坡地安全評估方法與安全監測指標研究」,碩士論文,國立台灣科技大學,台北市(2000)。
    39.陳俊元,「砂質邊坡穩定性之安全監測指標研究」,碩士論文,國立台灣科技大學,台北市(2001)。
    40.U.S. Department of Transportation,Federal Highway Administration, “PC-STABL5M User guide", Turner-Fairbank, Highway Research Center, Mclean, VA22101-2296 (1989).
    41.Vermeer, P. A., and R. de Borst. “Non-associated plasticity for soils, Concrete and Rock”, Heron, Vol.29, No.3, pp.3-64 (1984)
    42.Bowles, J. E., “Foundation Analysis and Design”, 4th Ed., McGraw-Hill Inc., New York (1988).
    43.Das, B. M., “Principles of Foundation Engineering”, 2nd Ed., PWS Publishing Company, Boston (1997).
    44.Orense, R. P., Shimoma, S., Maeda, K. and Towhata, I., “Instrumented model slope failure due to water seepage”, Journal of Natural Disaster Science, Vol.26, pp.15-26 (2004).
    45.吳俊緯, 「地下水位對砂質邊坡之連續性破壞研究」,碩士論文,國立台灣科技大學,臺北市(2009)。
    46.Tohari, A., Nishigaki, M. and Komatsu, M., “Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133 , No.5, pp.575-587 (2007).
    47.Strack, O. D. and Asgian, M. I., “A New Function for Use in the Hodograph Method”, Water Resources Research, Vol.14, No.6, pp.1045-1058 (1978).
    48.Orense, R. P., Shimoma, S., Maeda, K., Farooq, K. and Towhata, I., " Laboratory model tests on rainfall-induced landslides", Proceedings of International Symposium on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage, Kyoto, Japan, pp.61-71 (2002).
    49.Mori T, Hohri Y, Kohgo Y., “Model test for slope failure under seepage and analysis of elasto-plastic model for unsatulated soil”. Proceedings of the Japan National Conference on Geotechnical Engineering, JGS38, pp.1283-1284 (2003).

    QR CODE