簡易檢索 / 詳目顯示

研究生: 林日程
Ri-Cheng Lin
論文名稱: 利用調整格雷編碼位元長度改善及時超音波監測HIFU治療
Golay-encoded US imaging for continuous HIFU monitoring: Effect of bit length on HIFU suppression
指導教授: 沈哲州
Che-Chou Shen
口試委員: 沈哲州
Che-Chou Shen
李夢麟
Meng-Lin Li
謝寶育
Bao-Yu Hsieh
廖愛禾
Ai-Ho Liao
鄭耿璽
Geng-Shi Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 高能量聚焦超音波治療超音波影像導引之高能量聚焦超音波燒灼高能量聚焦超音波干擾格雷編碼格雷解碼
外文關鍵詞: HIFU Therapy, US-gHIFU, HIFU Interference, Golay Excitation, Golay decoding
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超音波(Ultrasound)成像因為具有較好的時間解析度以及相對低的成本,對於監測高能量聚焦超音波(HIFU)的治療手術有很好的潛力。然而,超音波引導HIFU治療監測經常會受到強烈的HIFU干擾,這種干擾會蓋過成像陣列接收到的回音訊號使得監測無法順利進行。為了避免干擾,在我們先前研究方法中,使用了格雷編碼(Golay-encoded)結合脈衝反向(Pulse-inversion subtraction)技術來達成消除HIFU干擾。其中消除干擾的部分,是透過脈衝反向的過程來消除HIFU干擾,並藉由格雷編碼激發的特性,透過格雷解碼(Golay-decoding)來增強影像信號。
本論文提出了只需使用格雷編碼激發並透過調整格雷編碼位元長度就能夠達成消除HIFU干擾的效果。也因為採用了格雷編碼激發,在消除干擾的同時能有效的增強影像信號。且除去了脈衝反向過程的額外發射,對於運動偽影(motion artifact)的影響應能有效的降低。其中格雷編碼位元長度需調整與發射HIFU 波形週期為特定比例,在本研究中分別以Case I (四分之一的奇數倍)與Case II (四分之一的偶數倍)統稱。
研究結果顯示使用4位元格雷編碼發射時,能在Case I以及Case II將HIFU干擾信號有效的消除,且峰值訊雜比(PSNR)在經過格雷解碼過後,能有效提升大約20 dB。值得注意的是,在HIFU諧波消除的部分,Case I中僅能消除奇數階諧波信號,而在Case II當中則可以消除所有HIFU諧波信號。
此外,本研究提出的方法也適用於HIFU連續波傳輸,相較於脈衝波傳輸,HIFU信號整體強度會因改成連續波傳輸而有所提升,HIFU諧波信號影響可由連續波傳輸實驗結果清楚的觀察到在Case II中因消除所有HIFU諧波信號,表現得比Case I還理想。


Ultrasound (US) imaging has high potential in monitoring high-intensity focused ultrasound (HIFU) treatment due to its superior temporal resolution and relatively low cost. However, US monitoring is often hindered by strong HIFU interference which overwhelms the echoes received by the imaging array. In order to avoid the HIFU interference, in our previous study, we have proposed a Golay-encoded US-gHIFU method by combining Golay excitation with PI subtraction for real-time US monitoring of HIFU treatment. It eliminates HIFU interference in the process of the PIS and enhances the image signal through the Golay decoding.
In this study, we propose only using the Golay-encoded by adjusting the bit length of Golay code for eliminating HIFU interference. Due to adapting Golay excitation, it effectively eliminates HIFU interference patterns in real-time US imaging and also enhances the image signal. In addition, the extra emissions in the process of PIS is removed. It should effectively reduce the motion effect. In the method, the bit length of Golay code needs to be relative to the period of HIFU. For convenience, we will call Case I (odd integer multiples of the HIFU quarter period) and Case II (even integer multiples of the HIFU quarter period).
Experimental results show that 4-bit Golay transmit in Case I and Case II can eliminate the HIFU interference and increase the PSNR of US monitoring image by about 20 dB. It should be noted that, however, the result of eliminating HIFU harmonics in the Case I and Case II. In Case I, it only eliminates odd-order HIFU harmonics. In contrast, it not only eliminates odd-order HIFU harmonics but also even-order HIFU harmonics.
In addition, the proposed method is also works for continuous-wave HIFU transmission. Compared with pulse-wave HIFU transmission, the HIFU signal intensity will be higher. Obviously, in the continuous-wave HIFU transmission experiment, the performance in Case II markedly outperforms Case I by eliminating all HIFU harmonics.

摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1-1醫用超音波基本原理 1 1-2 高能量聚焦超音波 3 1-3研究動機與目的 5 第二章 文獻回顧 6 2-1相關文獻探討 6 2-2 HIFU脈衝波發射 6 2-3 HIFU連續波發射 10 2-4先前研究方法 14 第三章 研究方法 17 3-1 研究方法 17 3-2模擬設置 25 3-3實驗設置 27 3-4圖像品質評估 32 第四章 研究結果 33 4-1 模擬結果 33 4-2 實驗結果 36 4-2-1 HIFU脈衝波發射 36 4-2-2 HIFU連續波發射 43 第五章 討論、結論與未來工作 49 5-1 結果與討論 49 5-2結論與未來工作 56 附錄 58 參考文獻 59

[1] 沈哲州,「醫用超音波影上課講義」,國立台灣科技大學電機所,
民國107年。
[2] Y. Wang, Z. B. Wang, and Y. H. Xu, "Efficacy, Efficiency, and Safety of Magnetic Resonance-Guided High-Intensity Focused Ultrasound for Ablation of Uterine Fibroids: Comparison with Ultrasound-Guided Method," Korean Journal of Radiology, Article vol. 19, no. 4, pp. 724-732, Jul-Aug 2018.
[3] H. Azzouz and J. J. M. C. H. de la Rosette, "HIFU: Local Treatment of Prostate Cancer, "EAU-EBU Update Series, vol. 4, no. 2, pp. 62-70. (2006).
[4] S. Vaezy, R. Martin, and L. Crum, "High intensity focused ultrasound: a method of hemostasis," Echocardiography, vol. 18, no. 4, pp. 309-15, May 2001.
[5] E. E. Konofagou, Y.-S. Tung, J. Choi, T. Deffieux, B. Baseri, and F. Vlachos,"Ultrasound-induced blood-brain barrier opening,"Current pharmaceutical biotechnology, vol. 13, no. 7, pp. 1332-1345, 2012.
[6] Y. Meng, M. Volpini, S. Black, A. M. Lozano, K. Hynynen, and N. Lipsman, "Focused ultrasound as a novel strategy for Alzheimer disease therapeutics," Ann Neurol, vol. 81, no. 5, pp. 611-617, May 2017.
[7] I. Rivens, A. Shaw, J. Civale, and H. Morris, "Treatment monitoring and thermometry for therapeutic focused ultrasound, " Int J Hyperthermia, vol. 23, no. 2, pp. 121-39, Mar 2007.
[8] K. Kuroda," MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments, "J Magn Reson Imaging, vol. 47, no. 2, pp. 316-331, Feb 2018.
[9] M. A. Solovchuk, S. C. Hwang, H. Chang, M. Thiriet, and T. W. Sheu, "Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study," Med Phys, vol. 41, no. 5, p. 052903, May 2014.
[10] X. Zhou, Q. He, A. Zhang, M. Beckmann, and C. Ni, "Temperature measurement error reduction for MRI-guided HIFU treatment," Int J Hyperthermia, vol. 26, no. 4, pp. 347-58, 2010.
[11] D. Liu and E. S. Ebbini, "Real-time 2-D temperature imaging using ultrasound," IEEE transactions on bio-medical engineering, vol. 57, no. 1, pp. 12-16, 2010.
[12] N. R. Miller, J. C. Bamber, and G. R. ter Haar, "Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery, " Ultrasound in Medicine & Biology, vol. 30, no. 3, pp. 345-356. (2004).
[13] R. Souchon et al., "Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: A feasibility study, " Ultrasound in Medicine & Biology, vol. 31, no. 2, pp. 251-259. (2005).
[14] R. M. Arthur, J. W. Trobaugh, W. L. Straube, and E. G. Moros, "Temperature dependence of ultrasonic backscattered energy in motion-compensated images, "IEEE Trans Ultrason Ferroelectr Freq Control, vol. 52, no. 10, pp. 1644-52, Oct 2005.
[15] P. D. Bevan and M. D. Sherar, "B-scan ultrasound imaging of thermal coagulation in bovine liver: frequency shift attenuation mapping," Ultrasound Med Biol, vol. 27, no. 6, pp. 809-17, Jun 2001.
[16] S. Vaezy et al., "Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging," Ultrasound Med. Biol., vol. 27, no. 1, pp. 33-42, 2001.
[17] E. J. Shin, B. Kang, and J. H. Chang, "Real-Time HIFU Treatment Monitoring Using Pulse Inversion Ultrasonic Imaging," Appl. Sci., vol. 8, no. 11, p. 2219, 2018.
[18] J. S. Jeong, J. H. Chang and K. K. Shungc, “Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: A preliminary study,” Ultrasonics, Vol. 52, no. 6, pp. 730-739, 2012.
[19] R. Takagi, Y. Koseki, S. Yoshizawa, and S. I. Umemura, "Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment," Ultrasonics, vol. 114, p. 106394, Jul 2021.
[20] A. Nowicki, W. Secomski, J. Litniewski, I. Trots and P. A. Lewin, “On the application of signal compression using Golay's codes sequences in ultrasound diagnostic, ”Archives of Acoustics, Vol. 28, no. 4, pp. 313-324, 2003.
[21] G. H. Lai, P. C. Li, and C.C.Shen, "Golay-Encoded Pulse-Inversion Subtraction for Real-Time Ultrasound Monitoring of HIFU Therapy," in Proc. IEEE Ultrason. Symp., 2019, pp. 127-130.
[22] X. Huang, "Complementary Properties of Hadamard Matrices, "in Proc. Int. Conf. Commun., Circuits Syst., 2006, pp. 588–592.
[23] R. Y. Chiao, Method and apparatus using golay-coded excitation for echocardiology, U. S. Patent 6,487,433 (2002).
[24] J. G. Yu, P. H. Liu, and C. C. Shen, "SNR improvement and range side lobe suppression in Golay-encoded Doppler detection for ultrasound high-frequency swept-scan imaging system, " Biomedical Signal Processing and Control, vol. 41, pp. 31-39, 2018.

無法下載圖示 全文公開日期 2024/09/06 (校內網路)
全文公開日期 2031/09/06 (校外網路)
全文公開日期 2031/09/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE