簡易檢索 / 詳目顯示

研究生: 吳尚學
Shang-Syue Wu
論文名稱: 亞穩態 β 鈦合金於 α+β 與 β 區熱鍛下之塑流行為及微觀組織演化
Flow behavior and microstructure evolution of metastable β titanium alloy during hot upset forging in α+β and β regions
指導教授: 何羽健
Yu-Chien Ho
口試委員: 丘群
楊侑倫
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 亞穩態 β 鈦合金熱鍛塑流行為本構方程式微觀組織演化背向散射電子繞射技術
外文關鍵詞: Metastable β Titanium Alloy, Hot Forging, Flow Behavior, Constitutive Description, Microstructure Evolution, Electron Back-scatter Diffraction
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究亞穩態β鈦合金Ti-10V-2Fe-3Al (Ti-1023)於雙相區(α+β相)與單相區(β相) 熱壓縮變形下之塑流行為與顯微結構演變,使用Gleeble-3500熱加工模擬試驗機在變形溫度700-900 ℃與應變速率0.01-1 s-1進行單軸熱鍛加工,取得不同應變量下之真實應力-應變曲線及微觀結構。並基於應力-應變圖數據,繪製製程加工圖(Processing map),確認良好加工區間無論位於雙相區還是單相區皆為低應變速率0.01-0.1 s-1區間。進而計算出Ti-1023合金之變形活化能,700 ℃(α+β相)為333.2 kJ/mol,900 ℃(β相)為 212.4 kJ/mol,且建立本構方程式以描述熱鍛壓過程中之變形行為,驗證本構方程預測結果與實驗數據之間的準確性。另一方面,透過背向散射電子技術(Electron backscatter diffraction, EBSD),觀察不同相區間之微觀結構變形演化;掌握Ti-1023於高溫變形下之應變硬化及動態軟化機制,α+β相為連續動態再結晶與不連續動態再結晶作為主要的軟化機制,且隨著不連續動態再結晶比例上升,微觀結構呈現出局部流動特徵,而β相主要的軟化機制為動態回復。最後,藉由顯微硬度測試建立機械性質與晶粒尺寸之關聯(Hall-Petch method),明顯得知β相之顯微硬度對於平均晶粒尺寸有高度敏感性。


    A study on flow behavior and microstructure evolution of near β titanium alloy Ti-10V-2Fe-3Al (Ti-1023) in two-phase region (α+β phase) and single-phase region (β phase) during hot upsetting was presented. The Gleeble-3500 thermal processing machine was employed to perform uniaxial hot upset forging at temperatures of 700 ℃ to 900 ℃ and strain rates of 0.01 s-1 to 1 s-1, the true stress-strain curves and microstructural evolution under different strains were carried out in this present study. Based on the true stress-strain curves, processing maps were performed to confirm that the great processing window in the range of low strain rates 0.01 s-1 to 0.1 s-1 whether forming in α+β phase region or β phase region. Besides, the average deformation activation energy of Ti-1023 alloy held 333.2 kJ/mol in α+β phase region and 212.4 kJ/mol in β phase region were calculated, accordingly the constitutive equations were also established for describing the hot deformation behavior as well as the prediction of experimental true stress-strain curves were verified. On the other hand, the deformation evolution of the microstructures in different phase regions were observed through electron backscatter diffraction (EBSD) technique, the strain hardening and dynamic softening mechanism of Ti-1023 under elevated deformation temperature were comprehended, in which the mainly softening mechanism occurred with continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) in the α+β phase region, thus the proportion of discontinuous dynamic recrystallization (DDRX) increased and the more characteristics of local flow were found in the texture, however, the major softening mechanism in the β phase region dominated with dynamic recovery. Subsequently, the relationship between mechanical properties and grain size was established by using microhardness test (Hall-Petch method), hence the microhardness with highly sensitivity to the average grain size in the β phase region relatively.

    目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 引言 1.1前言 1.2 文獻回顧 1.3 研究動機與目的 1.4 論文架構 第二章 基礎理論 2.1 應力-應變圖 2.2 製程加工圖(Processing map) 2.3 熱加工之本構方程式 2.3.1 變形活化能(Deformation activation energy) 2.3.2 Zener-Hollomon參數 2.3.3 應變補償應力預測模型 2.4 動態再結晶模型 2.4.1 峰值應變 2.4.2 臨界應變 2.4.3 動態再結晶百分比預測 2.4.4 50%動態再結晶應變 2.5 熱變形加工微觀結構之演化 2.5.1 回復(Recovery) 2.5.2 動態回復(Dynamic recovery) 2.5.3 動態再結晶(Dynamic recrystallization) 2.5.4 晶粒成長(Grain growth) 2.6 Hall-Petch本構方程式 第三章 實驗方法與步驟 3.1 實驗材料 3.2 圓柱壓縮試驗 3.3 金相微觀組織 3.4 顯微硬度測試 第四章 Ti-10V-2Fe-3Al合金高於/低於β轉換溫度之熱加工性分析 4.1 於雙相與單相區熱鍛下之塑流行為差異 4.2 製程加工圖高於/低於β轉換溫度之分析 4.3 微觀結構之分析 4.4 Ti-10V-2Fe-3Al合金之本構方程式 4.4.1 於雙相區與單相區熱鍛之動能分析 4.4.2 高於/低於β轉換溫度之應力預測 4.5 Ti-10V-2Fe-3Al動態再結晶百分比預測 第五章 Ti-10V-2Fe-3Al合金高於/低於β轉換溫度之動態演化分析 5.1 於不同溫度下熱鍛之應變硬化分析 5.2 於雙相與單相區熱鍛下之軟化行為差異 5.2.1 應變量差異 5.2.2 應變速率差異 5.2.3 溫度差異 5.3 Ti-10V-2Fe-3Al高於/低於β轉換溫度之動態再結晶機制 5.4 高於/低於β轉換溫度之晶粒細化 第六章 結論 參考文獻

    參考文獻
    [1] Chamanfar, A., Huang, M. F., Pasang, T., Tsukamoto, M., and Misiolek, W. Z. (2020). Microstructure and mechanical properties of laser welded Ti-10V-2Fe-3Al (Ti1023) titanium alloy. Journal of Materials Research and Technology, 9(4), 7721-7731.
    [2] Zhou, Y., Zhou, J., Shu, Q., Li, S., Gongye, F., Long, S., and Deng, H. (2020). Deformation Mechanism and Constitutive Consideration for Ti-5Al-5Mo-5V-3Cr-1Zr Alloy Compressed at Elevated Temperatures. Journal of Materials Engineering and Performance, 29, 5104-5113.
    [3] Bao, R. Q., Huang, X., and Cao, C. X. (2006). Deformation behavior and mechanisms of Ti-1023 alloy. Transactions of Nonferrous Metals Society of China, 16(2), 274-290.
    [4] OuYang, D. L., Fu, M. W., and Lu, S. Q. (2014). Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation. Materials Science and Engineering: A, 619, 26-34.
    [5] Quan, G. Z., Lv, W. Q., Liang, J. T., Pu, S. A., Luo, G. C., and Liu, Q. (2015). Evaluation of the hot workability corresponding to complex deformation mechanism evolution for Ti–10V–2Fe–3Al alloy in a wide condition range. Journal of Materials Processing Technology, 221, 66-79.
    [6] Lei, L., Huang, X., Wang, M., Wang, L., Qin, J., Li, H., and Lu, S. (2011). Effect of hot compressive deformation on the martensite transformation of Ti-10V-2Fe-3Al titanium alloy. Materials Science and Engineering: A, 530, 591-601.
    [7] Naseri, R., Casillas, G., Mitchell, D. R. G., Savvakin, D. G., Ahmed, M., Furuhara, T., and Pereloma, E. V. (2021). Effect of strain on microstructural development during uniaxial compression of metastable beta Ti-10V-2Fe-3Al alloy. Materials Science and Engineering: A, 804, 140720.
    [8] Hua, K., Xue, X. Y., Kou, H. C., Fan, J. K., Tang, B., and Li, J. S. (2014). High temperature deformation behaviour of Ti-5Al-5Mo-5V-3Cr during thermomechanical processing. Materials Research Innovations, 18(sup4), S4-212.
    [9] Zhang, H., Shao, H., Shan, D., Wang, K., Cai, L., Yin, E., ... and Zhuo, L. (2021). Influence of strain rates on high temperature deformation behaviors and mechanisms of Ti-5Al-5Mo-5V-3Cr-1Zr alloy. Materials Characterization, 171, 110794.
    [10] Zhao, Q. Y., Yang, F., Torrens, R., and Bolzoni, L. (2019). Evaluation of the hot workability and deformation mechanisms for a metastable beta titanium alloy prepared from powder. Materials Characterization, 149, 226-238.
    [11] Zhao, Q., Yang, F., Torrens, R., and Bolzoni, L. (2019). Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Materials and Design, 169, 107682.
    [12] Li, C., Huang, L., Zhao, M., Guo, S., and Li, J. (2021). Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region. Materials Science and Engineering: A, 814, 141231.
    [13] Lei, J., Zhu, W., Chen, L., Sun, Q., Xiao, L., and Sun, J. (2020). Deformation behaviour and microstructural evolution during the hot compression of Ti-5Al4Zr8Mo7V alloy. Materials Today Communications, 23, 100873.
    [14] Bao, R. Q., and Cao, C. X. (2006). Deformation Behavior and Mechanisms of Ti-1023 Alloy. Transactions of Nonferrous Metals Society of China. Volume 16, Issue 2, 274-290.
    [15] Quan, G., Lv, W., Liang, J., Pu, S., Luo, G., and Liu, Q. (2015). Evaluation of the Hot Workability Corresponding to Complex Deformation Mechanism Evolution for Ti-10V-2Fe-3Al Alloy in a Wide Condition Range. Journal of Materials Processing Technology. 221: 66-79.
    [16] Wu, C., Huang, L., and Li, C. M. (2020). Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α+ β region. Materials Science and Engineering: A, 773, 138851.
    [17] Xiao, Y. W., Lin, Y. C., Jiang, Y. Q., Zhang, X. Y., Pang, G. D., Wang, D., and Zhou, K. C. (2020). A dislocation density-based model and processing maps of Ti-55511 alloy with bimodal microstructures during hot compression in α+ β region. Materials Science and Engineering: A, 790, 139692
    [18] Jiang, Y. Q., Lin, Y. C., Wang, G. Q., Pang, G. D., Chen, M. S., and Huang, Z. C. (2021). Microstructure evolution and a unified constitutive model for a Ti-55511 alloy deformed in β region. Journal of Alloys and Compounds, 870, 159534.
    [19] Buzolin, R. H., Miller Branco Ferraz, F., Lasnik, M., Krumphals, A., and Poletti, M. C. (2020). Improved predictability of microstructure evolution during hot deformation of titanium alloys. Materials, 13(24), 5678.
    [20] Bao, X., Chen, W., Zhang, J., Yue, Y., and Sun, J. (2021). Achieving high strength-ductility synergy in a hierarchical structured metastable β-titanium alloy using through-transus forging. Journal of Materials Research and Technology, 11, 1622-1636.
    [21] Zhao, J., Zhong, J., Yan, F., Chai, F., and Dargusch, M. (2017). Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al. Journal of Alloys and Compounds, 710, 616-627.
    [22] Lypchanskyi, O., Śleboda, T., Łukaszek-Sołek, A., Zyguła, K., and Wojtaszek, M. (2021). Application of the strain compensation model and processing maps for description of hot deformation behavior of metastable β titanium alloy. Materials, 14(8), 2021.
    [23] Wu, C., Huang, L., and Li, C. M. (2020). Experimental investigation on dynamic phase transformation and texture evolution of Ti55531 high strength titanium alloy during hot compression in the α+ β region. Materials Science and Engineering: A, 773, 138851.
    [24] Peng, W., Zeng, W., Wang, Q., and Yu, H. (2013). Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map. Materials Science and Engineering: A, 571, 116-122.
    [25] Ashraf Imam, M. (2016). The 13th world conference on titanium (Ti-2015). JOM, 68(9), 2492-2501.
    [26] Frost, H. J., and Ashby, M. F. (1982). Deformation-mechanism maps: The plasticity and creep of metals and ceramics(Book). Oxford, Pergamon Press, 1982, 175 p.
    [27] Prasad, Y. V. R. K. (2003). Processing maps: a status report. Journal of Materials Engineering and Performance, 12, 638-645.
    [28] 林明潔(2015),6069鋁合金熱加工性探討,碩士論文,中華大學機械工程學系碩士班。
    [29] Ziegler, H. (1963). Some extremum principles in irreversible thermodynamics, with application to continuum mechanics. Progress in solid mechanics, vol. 4, 93-193.
    [30] Bruggeman, G., and Weiss, V. (2012). Innovations in Materials Processing (Vol. 30). Springer Science and Business Media.
    [31] Ding, S., Khan, S. A., and Yanagimoto, J. (2020). Flow behavior and dynamic recrystallization mechanism of A5083 aluminum alloys with different initial microstructures during hot compression. Materials Science and Engineering: A, 787, 139522.
    [32] Wan, P., Wang, K., Zou, H., Lu, S., and Li, X. (2019). Study on hot deformation and process parameters optimization of Ti-10.2 Mo-4.9 Zr-5.5 Sn alloy. Journal of Alloys and Compounds, 777, 812-820.
    [33] Ma, L., Wan, M., Li, W., Shao, J., and Bai, X. (2019). Constitutive modeling and processing map for hot deformation of Ti-15Mo-3Al-2.7 Nb-0.2 Si. Journal of Alloys and Compounds, 808, 151759.
    [34] Lin, Y. C., Chen, M. S., and Zhong, J. (2008). Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Computational Materials Science, 42(3), 470-477.
    [35] Zener, C., and Hollomon, J. H. (1944). Effect of strain rate upon plastic flow of steel. Journal of Applied physics, 15(1), 22-32.
    [36] Sellars, C. M., and McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136-1138.
    [37] 葉佐倫(2015),鎂合金板材熱間壓延之微觀組織預測,碩士論文,國立中山大學。
    [38] Dong, D., Chen, F., and Cui, Z. (2015). A physically-based constitutive model for SA508-III steel: Modeling and experimental verification. Materials Science and Engineering: A, 634, 103-115.
    [39] Solhjoo, S. (2009). Analysis of flow stress up to the peak at hot deformation. Materials and design, 30(8), 3036-3040.
    [40] Jackson, M., Dashwood, R., Flower, H., and Christodoulou, L. (2005). The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging. Metallurgical and Materials Transactions A, 36, 1317-1327.
    [41] Yanagida, A., Liu, J., and Yanagimoto, J. (2003). Flow curve determination for metal under dynamic recrystallization using inverse analysis. Materials Transactions, 44(11), 2303-2310.
    [42] Langdon, T. G. (1994). An evaluation of the strain contributed by grain boundary sliding in superplasticity. Materials Science and Engineering: A, 174(2), 225-230.
    [43] Reed-Hill, R. E., Abbaschian, R., and Abbaschian, R. (1973). Physical metallurgy principles (Vol. 17). New York: Van Nostrand.
    [44] E.O. Hall. (1951). Proc. Phys. Soc., B64, pp. 747-753.
    [45] N.J. Petch. (1953). J. Iron Steel Inst, 174 , p. 25.
    [46] Furukawa, M., Horita, Z., Nemoto, M., Valiev, R. Z., and Langdon, T. G. (1996). Microhardness measurements and the Hall-Petch relationship in an Al Mg alloy with submicrometer grain size. Acta Materialia, 44(11), 4619-4629.
    [47] Ding, S., Khan, S. A., and Yanagimoto, J. (2020). Flow behavior and dynamic recrystallization mechanism of A5083 aluminum alloys with different initial microstructures during hot compression. Materials Science and Engineering: A, 787, 139522.
    [48] Yilmaz, A. (2011). The Portevin–Le Chatelier effect: a review of experimental findings. Science and technology of advanced materials.
    [49] 張聖藝,張呈嘉,何佳育,呂振益,廖學誠,周棟勝 (2017),鍛造製程對AA6082 鋁合金之顯微組織及機械性質研究,鑛冶: 中國鑛冶工程學會會刊,61(4),77-88。
    [50] 周棟勝, 廖學誠,張聖藝 (2016),汽車用高功能性鍛造鎂合金輪圈開發,鑛冶: 中國鑛冶工程學會會刊,60(4),17-31。
    [51] Prasad, Y. V. R. K., and Seshacharyulu, T. J. M. R. (1998). Modelling of hot deformation for microstructural control. International Materials Reviews, 43(6), 243-258.
    [52] Su, J., Ji, X., Xie, H., Tang, J., Jiang, F., Fu, D., ... and Zhang, H. (2022). Constitutive and microstructural characteristics of Ti-5Al-2.5 Sn alloy during isothermal and non-isothermal multi-stage hot deformation across different phase regions. Journal of Alloys and Compounds, 908, 164647.
    [53] Sen, M., Suman, S., Banerjee, T., Bhattacharjee, A., and Kar, S. K. (2019). Tensile deformation mechanism and failure mode of different microstructures in Ti5Al5Mo5V3Cr alloy. Materials Science and Engineering: A, 753, 156-167.
    [54] Robertson, D. G., and McShane, H. B. (1998). Analysis of high temperature flow stress of titanium alloys IMI 550 and Ti-10V-2Fe-3AI during isothermal forging. Materials science and technology, 14(4), 339-345.
    [55] Cheng, L., Chang, H., Tang, B., Kou, H., and Li, J. (2013). Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. Journal of alloys and compounds, 552, 363-369.
    [56] Li, H. B., Zheng, X. P., Wan, D. C., and Chen, L. S. (2019). Effect of time interval on microstructure evolution of medium carbon steel during warm deformation. Journal of Iron and Steel Research International, 26, 602-610.
    [57] Li, H., Fan, L., Chen, L., and Jia, L. (2020). Effect of cooling mode on the microstructure and mechanical properties of medium carbon steel after warm rolling. Ironmaking and Steelmaking, 47(9), 1022-1028.
    [58] Abbasi, S. M., Morakkabati, M., Sheikhali, A. H., and Momeni, A. (2014). Hot deformation behavior of beta titanium Ti-13V-11Cr-3Al alloy. Metallurgical and Materials Transactions A, 45, 5201-5211.
    [59] Lin, Y. C., Wu, X. Y., Chen, X. M., Chen, J., Wen, D. X., Zhang, J. L., and Li, L. T. (2015). EBSD study of a hot deformed nickel-based superalloy. Journal of alloys and compounds, 640, 101-113.
    [60] Ding, S., Khan, S. A., and Yanagimoto, J. (2020). Flow behavior and dynamic recrystallization mechanism of A5083 aluminum alloys with different initial microstructures during hot compression. Materials Science and Engineering: A, 787, 139522.
    [61] OuYang, D. L., Fu, M. W., and Lu, S. Q. (2014). Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation. Materials Science and Engineering: A, 619, 26-34.
    [62] Zhao, J., Zhong, J., Yan, F., Chai, F., and Dargusch, M. (2017). Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al. Journal of Alloys and Compounds, 710, 616-627.
    [63] Chao, Q., Hodgson, P. D., and Beladi, H. (2014). Ultrafine grain formation in a Ti-6Al-4V alloy by thermomechanical processing of a martensitic microstructure. Metallurgical and Materials Transactions A, 45, 2659-2671.
    [64] Ding, S., Khan, S. A., and Yanagimoto, J. (2020). Flow behavior and dynamic recrystallization mechanism of A5083 aluminum alloys with different initial microstructures during hot compression. Materials Science and Engineering: A, 787, 139522.
    [65] Beck, P. A., and Sperry, P. R. (1950). Strain induced grain boundary migration in high purity aluminum. Journal of applied physics, 21(2), 150-152.
    [66] Beer, A. G., and Barnett, M. R. (2007). Microstructural development during hot working of Mg-3Al-1Zn. Metallurgical and Materials Transactions A, 38, 1856-1867.
    [67] Sun, Y., Zhang, C., Feng, H., Zhang, S., Han, J., Zhang, W., ... and Wang, H. (2020). Dynamic recrystallization mechanism and improved mechanical properties of a near α high temperature titanium alloy processed by severe plastic deformation. Materials Characterization, 163, 110281.
    [68] Mehtonen, S. V., Palmiere, E. J., Misra, R. D. K., Karjalainen, L. P., and Porter, D. A. (2014). Dynamic restoration mechanisms in a Ti–Nb stabilized ferritic stainless steel during hot deformation. Materials Science and Engineering: A, 601, 7-19.
    [69] Okamoto, H. (2011). O-Ti (oxygen-titanium). Journal of Phase Equilibria and Diffusion, 32(5), 473-474.

    無法下載圖示 全文公開日期 2025/08/08 (校內網路)
    全文公開日期 2025/08/08 (校外網路)
    全文公開日期 2025/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE