研究生: |
黃淳逸 Chun-Yi Huang |
---|---|
論文名稱: |
電漿處理輔助異質雙面過渡金屬二硫化物薄膜生長 Plasma Treatment-Assisted Growth of Janus Transition Metal Dichalcogenides Thin Film |
指導教授: |
蔡孟霖
Ming-Ling Tsai |
口試委員: |
蔡東昇
Dung-Sheng Tsai 楊伯康 Po-Kang Yang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 過渡金屬二硫化物 、化學氣相沉積 、電漿處理 、二維材料 |
外文關鍵詞: | transition metal dichalcogenides, chemical vapor deposition, plasma treatment, two-dimentinal materials |
相關次數: | 點閱:484 下載:22 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維(2D)異質雙面(Janus)過渡金屬二硫屬化物(TMDC)作為一類新興的二維
材料非常有吸引力,但只有幾種方法可用於製造它們,然而這些方法有過多的參
數需要調整且容易受到環境的影響。為了克服這些缺點,本實驗透過調整化學氣
相沉積的參數包含溫度、氣體流量及壓力,在藍寶石玻璃基板上成功生長出均勻
的單層二硫化鉬多晶薄膜,晶粒尺寸達到 40 – 50 μm。為了降低製作成本和時間,
我們利用電漿處理來改質生長出的二硫化鉬薄膜,將其轉變成 SeMoS。通過調整
功率和時間,我們製作出大面積的 JTMD SeMoS 薄膜。實驗中,我們將電漿功
率設置為 50 瓦,處理時間為 10 分鐘,從而製作出相對完整的 JTMD SeMoS 薄
膜。透過拉曼光譜、拉曼 Mapping、光致發光光譜及原子力顯微鏡分析樣品,結
果證實我們成功製作出大面積的 JTMD SeMoS。該材料的能隙為 1.7 電子伏特,
厚度為 0.8 nm,相當於單層 JTMD SeMoS 的厚度。
Two-dimensional (2D) Janus transition metal dichalcogenides (TMDCs) are a
highly attractive class of emerging 2D materials, but there are only a few methods
available for their fabrication. However, these methods often require adjusting
numerous parameters and are easily influenced by environmental factors. To overcome
these drawbacks, in this experiment, we successfully grew uniform monolayer MoS₂
polycrystalline thin films with grain sizes reaching 40 – 50 μm on sapphire substrates
by adjusting the parameters of chemical vapor deposition including temperature, gas
flow, and pressure. To reduce production costs and time, we modified the grown MoS₂
thin films using plasma treatment, transforming them into SeMoS. By adjusting the
power and duration, we produced large-area JTMD SeMoS thin films. In the experiment,
we set the plasma power to 50 watts and the treatment time to 10 minutes, resulting in
relatively intact JTMD SeMoS thin films. Through Raman spectroscopy, Raman
mapping, photoluminescence spectroscopy, and atomic force microscopy analysis of
the samples, the results confirmed that we successfully fabricated large-area JTMD
SeMoS. The material exhibits a direct bandgap of 1.7 eV and a thickness of 0.8 nm,
corresponding to the thickness of a monolayer JTMD SeMoS.
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
2. Fang, T., et al., Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Physical Review B, 2008. 78(20): p. 205403.
3. Betti, A., G. Fiori, and G. Iannaccone, Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering. Applied Physics Letters, 2011. 98(21).
4. Long, M.-Q., et al., Theoretical predictions of size-dependent carrier mobility and polarity in graphene. Journal of the American Chemical Society, 2009. 131(49): p. 17728-17729.
5. Li, X., Science 319 1229 Crossref PubMed Google Scholar Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008. Phys. Rev. Lett, 2008. 100: p. 206803.
6. Yang, H.C., et al., Janus membranes: creating asymmetry for energy efficiency. Advanced materials, 2018. 30(43): p. 1801495.
7. Gong, Y., et al., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nature nanotechnology, 2018. 13(4): p. 294-299.
8. Zhang, H., et al., Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. Journal of Materials Chemistry A, 2014. 2(37): p. 15389-15395.
9. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
10. Ataca, C., H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
11. Xiang, Q., J. Yu, and M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 2012. 134(15): p. 6575-6578.
12. Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature materials, 2013. 12(9): p. 815-820.
13. Jin, T., et al., Suspended single-layer MoS2 devices. Journal of Applied Physics, 2013. 114(16).
14. Ju, L., et al., Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Frontiers of Physics, 2021. 16: p. 1-16.
15. Najmaei, S., et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature materials, 2013. 12(8): p. 754-759.
16. Huo, N., et al., High carrier mobility in monolayer CVD-grown MoS 2 through phonon suppression. Nanoscale, 2018. 10(31): p. 15071-15077.
17. Cai, Y., G. Zhang, and Y.-W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. Journal of the American Chemical Society, 2014. 136(17): p. 6269-6275.
18. Zhou, J., et al., A library of atomically thin metal chalcogenides. Nature, 2018. 556(7701): p. 355-359.
19. Cheng, Y., et al., Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. Europhysics Letters, 2013. 102(5): p. 57001.
20. Lu, A.-Y., et al., Janus monolayers of transition metal dichalcogenides. Nature nanotechnology, 2017. 12(8): p. 744-749.
21. Lin, Y.-C., et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS nano, 2020. 14(4): p. 3896-3906.
22. Peng, R., et al., Valley polarization in Janus single-layer MoSSe via magnetic doping. The journal of physical chemistry letters, 2018. 9(13): p. 3612-3617.
23. Chen, W., et al., Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano letters, 2013. 13(2): p. 509-514.
24. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
25. Cahangirov, S., et al., Frictional figures of merit for single layered nanostructures. Physical review letters, 2012. 108(12): p. 126103.
26. Yin, W.-J., et al., Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. Journal of Materials Chemistry C, 2018. 6(7): p. 1693-1700.
27. Yang, H.C., et al., Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 2016. 55(43): p. 13398-13407.
28. Guo, Y., et al., Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Applied Physics Letters, 2017. 110(16).
29. Ma, X., et al., Transition metal-functionalized Janus MoSSe monolayer: a magnetic and efficient single-atom photocatalyst for water-splitting applications. The Journal of Physical Chemistry C, 2019. 123(30): p. 18347-18354.
30. Guan, Z., S. Ni, and S. Hu, Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. The Journal of Physical Chemistry C, 2018. 122(11): p. 6209-6216.
31. Hayat, A., et al., Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023. 59: p. 102780.
32. Oreshonkov, A.S., E.V. Sukhanova, and Z.I. Popov, Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory. Materials, 2022. 15(11): p. 3988.
33. Jang, C.W., et al., Growth of two-dimensional Janus MoSSe by a single in situ process without initial or follow-up treatments. NPG Asia Materials, 2022. 14(1): p. 15.
34. Zhang, J., et al., Janus monolayer transition-metal dichalcogenides. ACS nano, 2017. 11(8): p. 8192-8198.
35. Petrić, M.M., et al., Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Physical Review B, 2021. 103(3): p. 035414.
36. Taghizadeh, A., et al., A library of ab initio Raman spectra for automated identification of 2D materials. Nature communications, 2020. 11(1): p. 3011.
37. Sze, S.M.L., M. K., Semiconductor Devices: Physics and Technology. 2012/05/15.
38. Wang, J., Surface preparation techniques for biomedical applications, in Coatings for Biomedical Applications. 2012, Elsevier. p. 143-175.
39. References, H.P.R., Henniker Plasma Related References. p. https://www.atom-semi.com/article_detail/22.htm.
40. Liu, X., P.K. Chu, and C. Ding, Surface nano-functionalization of biomaterials. Materials Science and Engineering: R: Reports, 2010. 70(3-6): p. 275-302.
41. Nageswaran, G., L. Jothi, and S. Jagannathan, Plasma assisted polymer modifications, in Non-thermal plasma technology for polymeric materials. 2019, Elsevier. p. 95-127.
42. Ji, Y., et al., Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. The Journal of Physical Chemistry C, 2018. 122(5): p. 3123-3129.
43. Fu, C.-F., et al., Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano letters, 2018. 18(10): p. 6312-6317.
44. Yin, W., et al., Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study. Progress in Natural Science: Materials International, 2019. 29(3): p. 335-340.
45. Zhang, K., et al., Defect-induced epitaxial growth for efficient solar hydrogen production. Nano letters, 2017. 17(11): p. 6676-6683.
46. Meng, Y., et al., Vacancy‐Induced Oxygen Reduction Activity in Janus Transition Metal Dichalcogenides. ChemElectroChem, 2020. 7(20): p. 4233-4238.
47. Hao, Y., et al., Stable zigzag edges of transition-metal dichalcogenides with high catalytic activity for oxygen reduction. Electrochimica Acta, 2020. 338: p. 135865.
48. Er, D., et al., Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano letters, 2018. 18(6): p. 3943-3949.
49. Shi, W., G. Li, and Z. Wang, Triggering catalytic active sites for hydrogen evolution reaction by intrinsic defects in Janus monolayer MoSSe. The Journal of Physical Chemistry C, 2019. 123(19): p. 12261-12267.
50. Hao, Y., et al., Chemical optimization towards superior electrocatalysis of Janus 1T-MoSX (X= O, Se, Te) for hydrogen evolution: Small composition tuning makes big difference. Electrochimica Acta, 2019. 310: p. 153-161.
51. Pakhira, S. and S.N. Upadhyay, Efficient electrocatalytic H 2 evolution mediated by 2D Janus MoSSe transition metal dichalcogenide. Sustainable Energy & Fuels, 2022. 6(7): p. 1733-1752.
52. Dong, L., J. Lou, and V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS nano, 2017. 11(8): p. 8242-8248.
53. Cai, H., et al., Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: A first-principles study. Nano Energy, 2019. 56: p. 33-39.
54. Yagmurcukardes, M., C. Sevik, and F. Peeters, Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Physical Review B, 2019. 100(4): p. 045415.
55. Liu, J. and S.T. Pantelides, Mechanisms of pyroelectricity in three-and two-dimensional materials. Physical Review Letters, 2018. 120(20): p. 207602.
56. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
57. Jin, C., et al., A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. Journal of Materials Chemistry A, 2019. 7(3): p. 1099-1106.
58. Xu, Y., et al., Intrinsic defect engineered Janus MoSSe sheet as a promising photocatalyst for water splitting. RSC advances, 2020. 10(18): p. 10816-10825.
59. Babariya, B., et al., Selective and sensitive toxic gas-sensing mechanism in a 2D Janus MoSSe monolayer. Physical Chemistry Chemical Physics, 2022. 24(25): p. 15292-15304.
60. Ye, M., et al. Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. in Photonics. 2015. MDPI.
61. AUNER,W., et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer and Metastasis Reviews, 2018, 37: 691-717.