簡易檢索 / 詳目顯示

研究生: 邱偉哲
Wei-Zhe Qiu
論文名稱: 超輕薄ITO-free上入光有機太陽能電池開發
Development of the ultra-thin, ITO-free, and top-illuminated organic solar cells
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
范慶麟
Ching-Lin Fan
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 67
中文關鍵詞: 超輕薄金屬電極高分子鍍膜機功率重量比
外文關鍵詞: Ultrathin, metal electrode, CVD, power-per-weight
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為開發超輕薄軟性有機太陽能電池(Ultrathin and lightweight organic solar cells),首先我們設計ITO-free金屬電極來取代銦錫氧化物(Indium Tin Oxides, ITO)陽極,並使用實驗室所開發的parylene-C基板來取代玻璃基板與玻璃封裝,Parylene-C基板為超輕薄基板,具有極低的重量及高透明度。
    我們使用高分子鍍膜機(Chemical Vapor Deposition, CVD)製做基板與封裝,在厚度為4 μm的parylene-C基板上使用真空熱蒸鍍系統沉積金屬電極與有機層,其金屬電極為HAT-CN/Ag/HAT-CN,主動層使用DTDCPB作為施體、C70作為受體混合沉積,並成長3 μm的parylene-C封裝層來保護元件。
    本研究中證實了金屬電極相較於室溫ITO更適合生長在Parylene薄膜上,這種超輕薄軟性有機太陽能電池,總厚度與重量分別為7.4 μm與9.92 g/m2,功率重量比為5.3 W/g。Parylene基板給未來在開發太陽能電池提供了更好的方向,也因為超輕薄的優勢,替未來的產品與設備上解決了重量上的問題,使太陽能電池可以更廣泛的被運用在各種裝置上。


    In this thesis, we developed ultra-thin and lightweight organic solar cells. First, we designed a metal electrode to replace indium tin oxide (ITO) electrode. Following, the parylene-C substrate which developed in our laboratory was applied to replace both glass substrate and glass encapsulation. Parylene-C is a ultrathin substrate that provides the low weight and high transparency characteristic.
    We use chemical vapor deposition (CVD) to achieve fabricating substrate and encapsulation process. Then, metal electrode and organic layer were deposited on a 4 μm thick parylene-C substrate by high vacuum thermal process. The metal electrode structure is HAT-CN/Ag/HAT-CN, the active layer was mixed of DTDCPB (donor) and C70 (acceptor). Finally, we deposited 3 μm thickness of Parylene-C to protect the sample.
    In this study, we demonstrated metal electrodes are more suitable to grow on the parylene films compare with room temperature ITO. The thickness, weight-area ration and power-per-weight of ultrathin-lightweight organic solar cells are 7.4 μm, 9.92 g/m2 and 5.3 W/g, respectively. Parylene substrate starts a better path for Organic solar cells and also solve weight problem for commercial products and devices may encounter in the future. Due to the advantages mentioned above, we can ensure that organic solar cells can be more widely used in various devices.

    中文摘要 .................................................................................................................... I ABSTRACT .............................................................................................................. II 誌謝 .......................................................................................................................... III 目錄 ..........................................................................................................................IV 圖索引 .................................................................................................................... VII 表索引 ....................................................................................................................... X 第一章 緒論 .............................................................................................................. 1 1.1 前言 ..................................................................................................................... 1 1.2 太陽能電池發展簡介 ......................................................................................... 2 1.3 有機太陽能電池結構演變 ................................................................................. 3 1.3.1 平面單層結構 .............................................................................................. 3 1.3.2 雙層異質接面結構 ...................................................................................... 4 1.3.3 混合異質接面結構 ...................................................................................... 5 1.3.4 平面式混合異質接面結構 .......................................................................... 6 第二章 研究動機與文獻探討 .................................................................................. 8 第三章 理論基礎 .................................................................................................... 12 3.1 有機太陽能電池原理 ....................................................................................... 12 (1)光能吸收(Light absorption) ............................................................................ 12 (2)激子擴散(Exciton diffusion) .......................................................................... 13 (3)激子拆解(Exciton dissociation) ...................................................................... 13 (4)電荷收集(Charge collection) .......................................................................... 14 3.2 等效電路 ........................................................................................................... 15 3.3 元件特性與曲線 ............................................................................................... 16 V 3.3.1 開路電壓(VOC) .......................................................................................... 17 3.3.2 短路電流密度(???) .................................................................................. 18 3.3.3 填充因子(FF) ............................................................................................ 18 3.3.4 功率轉換效率(PCE) .................................................................................. 18 3.3.5 串聯電阻(RS)與並聯電阻(RSh) ................................................................. 19 3.4 高分子鍍膜基礎原理 ....................................................................................... 19 第四章 實驗架構 .................................................................................................... 21 4.1 實驗設備及量測儀器 ....................................................................................... 21 4.1.1 超音波震盪機 ............................................................................................ 21 4.1.2 溫控加熱板 ................................................................................................ 21 4.1.3 旋轉塗佈機 ................................................................................................ 22 4.1.4 曝光機 ........................................................................................................ 22 4.1.5 高真空材料昇華系統 ................................................................................ 23 4.1.6 氧電漿機 .................................................................................................... 23 4.1.7 原子層沉積系統 ........................................................................................ 24 4.1.8 真空熱蒸鍍系統 ........................................................................................ 25 4.1.9 真空濺鍍系統 ............................................................................................ 26 4.1.10 高分子鍍膜系統 ...................................................................................... 27 4.1.11 氮氣手套箱 .............................................................................................. 28 4.1.12 薄膜厚度輪廓量測儀 .............................................................................. 29 4.1.13阻抗分析儀 ............................................................................................... 29 4.1.14 太陽光模擬系統 ...................................................................................... 30 4.1.15 外部量子效率量測系統 .......................................................................... 31 4.1.16 原子力顯微鏡 .......................................................................................... 32 4.2 實驗前置作業 ................................................................................................... 33 VI 4.2.1 元件圖案化設計 ........................................................................................ 33 4.2.2 黃光微影 .................................................................................................... 33 4.2.3 材料純化 .................................................................................................... 34 4.3 實驗步驟 ........................................................................................................... 34 4.3.1 Parylene-C基板成長 .................................................................................. 34 4.3.2 真空熱蒸鍍沉積 ........................................................................................ 34 4.3.3 玻璃封裝製程 ............................................................................................ 35 4.3.3 高分子鍍膜封裝製程 ................................................................................ 35 4.4 量測分析 ........................................................................................................... 36 4.4.1 材料薄膜特性 ............................................................................................ 36 4.4.2 元件光電特性 ............................................................................................ 36 4.4.3 元件外部量子效率 .................................................................................... 36 第五章 結果與討論 ................................................................................................ 37 5.1 有機材料特性 ................................................................................................... 37 5.2 主動層材料吸收頻譜 ....................................................................................... 37 5.3 ITO陽極標準元件之特性 ................................................................................ 38 5.4 金屬電極之元件特性 ....................................................................................... 39 5.4.1 主動層厚度變化 ........................................................................................ 39 5.4.2 MoO3厚度變化 .......................................................................................... 41 5.4.3 HAT-CN厚度變化 .................................................................................... 42 5.5 PARYLENE上金屬電極與室溫ITO特性比較 ................................................. 44 5.6 玻璃封裝與PARYLENE封裝比較 .................................................................... 45 5.7 PARYLENE元件重量比 ...................................................................................... 47 第六章 結論與未來展望 ........................................................................................ 48 參考文獻 .................................................................................................................. 49

    [1] Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51(12), 913-915.
    [2] Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., & Forrest, S. R. (1998). Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395(6698), 151-154.
    [3] Adachi, C., Baldo, M. A., Forrest, S. R., & Thompson, M. E. (2000). High-efficiency organic electrophosphorescent devices with tris (2-phenylpyridine) iridium doped into electron-transporting materials. Applied Physics Letters, 77(6), 904-906.
    [4] Tsumura, A., Koezuka, H., & Ando, T. J. A. P. L. (1986). Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 49(18), 1210-1212.
    [5] Horowitz, G. (1999). Field-effect transistors based on short organic molecules. Journal of materials chemistry, 9(9), 2021-2026.
    [6] Shao, Y., & Yang, Y. (2005). Efficient organic heterojunction photovoltaic cells based on triplet materials. Advanced Materials, 17(23), 2841-2844.
    [7] Visoly-Fisher, I., Mescheloff, A., Gabay, M., Bounioux, C., Zeiri, L., Sansotera, M., ... & Katz, E. A. (2015). Concentrated sunlight for accelerated stability testing of organic photovoltaic materials: towards decoupling light intensity and temperature. Solar Energy Materials and Solar Cells, 134, 99-107.
    [8] Forrest, S. R. (1997). Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chemical reviews, 97(6), 1793-1896.
    [9] Shaheen, S. E., Brabec, C. J., Sariciftci, N. S., Padinger, F., Fromherz, T., & Hummelen, J. C. (2001). 2.5% efficient organic plastic solar cells. Applied Physics Letters, 78(6), 841-843.
    [10] Kang, M. G., Park, H. J., Ahn, S. H., & Guo, L. J. (2010). Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Solar Energy Materials and Solar Cells, 94(6), 1179-1184.
    [11] Chapin, D. M., Fuller, C. S., & Pearson, G. L. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.
    [12] Kearns, D., & Calvin, M. (1958). Photovoltaic effect and photoconductivity in laminated organic systems. The Journal of chemical physics, 29(4), 950-951.
    [13] Tang, C. W., & Albrecht, A. C. (1975). Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells. The Journal of chemical physics, 62(6), 2139-2149.
    [14] Chamberlain, G. A. (1983). Organic solar cells: A review. Solar cells, 8(1), 47-83
    [15] Wöhrle, D., & Meissner, D. (1991). Organic solar cells. Advanced Materials, 3(3), 129-138.
    [16] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
    [17] Peumans, P., Bulović, V., & Forrest, S. R. (2000). Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters, 76(19), 2650-2652.
    [18] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789-1791.
    [19] Tsuzuki, T., Shirota, Y., Rostalski, J., & Meissner, D. (2000). The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Solar Energy Materials and Solar Cells, 61(1), 1-8.
    [20] Uchida, S., Xue, J., Rand, B. P., & Forrest, S. R. (2004). Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C 60 active layer. Applied physics letters, 84(21), 4218-4220.
    [21] Peumans, P., Uchida, S., & Forrest, S. R. (2011). Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 94-98).
    [22] Hiramoto, M., Fujiwara, H., & Yokoyama, M. (1991). Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments. Applied physics letters, 58(10), 1062-1064.
    [23] Hiramoto, M., Fujiwara, H., & Yokoyama, M. (1992). p‐i‐n like behavior in three‐layered organic solar cells having a co‐deposited interlayer of pigments. Journal of applied physics, 72(8), 3781-3787.
    [24] Xue, J., Rand, B. P., Uchida, S., & Forrest, S. R. (2005). A hybrid planar–mixed molecular heterojunction photovoltaic cell. Advanced Materials, 17(1), 66-71.
    [25] Wynands, D., Männig, B., Riede, M., Leo, K., Brier, E., Reinold, E., & Bäuerle, P. (2009). Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. Journal of Applied Physics, 106(5), 054509.
    [26] Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T., & Bulović, V. (2015). Pathways for solar photovoltaics. Energy & Environmental Science, 8(4), 1200-1219.
    [27] Kaltenbrunner, M., White, M. S., Głowacki, E. D., Sekitani, T., Someya, T., Sariciftci, N. S., & Bauer, S. (2012). Ultrathin and lightweight organic solar cells with high flexibility. Nature communications, 3(1), 1-7.
    [28] Krebs, F. C. (2009). All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Organic Electronics, 10(5), 761-768.
    [29] O’Connor, B., Pipe, K. P., & Shtein, M. (2008). Fiber based organic photovoltaic devices. Applied Physics Letters, 92(19), 172.
    [30] Barr, M. C., Rowehl, J. A., Lunt, R. R., Xu, J., Wang, A., Boyce, C. M., ... & Gleason, K. K. (2011). Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Advanced Materials, 23(31), 3500-3505.
    [31] Barr, M. C., Howden, R. M., Lunt, R. R., Bulović, V., & Gleason, K. K. (2012). Top‐illuminated Organic Photovoltaics on a Variety of Opaque Substrates with Vapor‐printed Poly (3, 4‐ethylenedioxythiophene) Top Electrodes and MoO3 Buffer Layer. Advanced Energy Materials, 2(11), 1404-1409.
    [32] Leonat, L., White, M. S., Głowacki, E. D., Scharber, M. C., Zillger, T., Rühling, J., ... & Sariciftci, N. S. (2014). 4% efficient polymer solar cells on paper substrates. The Journal of Physical Chemistry C, 118(30), 16813-16817.
    [33] MacDonald, W. A. (2004). Engineered films for display technologies. Journal of Materials Chemistry, 14(1), 4-10.
    [34] MacDonald, W. A., Looney, M. K., MacKerron, D., Eveson, R., Adam, R., Hashimoto, K., & Rakos, K. (2007). Latest advances in substrates for flexible electronics. Journal of the Society for Information Display, 15(12), 1075-1083.
    [35] Jean, J., Wang, A., & Bulović, V. (2016). In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells. Organic Electronics, 31, 120-126.
    [36] Xu, X., Fukuda, K., Karki, A., Park, S., Kimura, H., Jinno, H., ... & Yokota, T. (2018). Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences, 115(18), 4589-4594.
    [37] Hill, I. G., Kahn, A., Soos, Z. G., & Pascal Jr, R. A. (2000). Charge-separation energy in films of π-conjugated organic molecules. Chemical Physics Letters, 327(3-4), 181-188.
    [38] Knupfer, M. (2003). Exciton binding energies in organic semiconductors. Applied Physics A, 77(5), 623-626.
    [39] Rim, S. B., Fink, R. F., Schöneboom, J. C., Erk, P., & Peumans, P. (2007). Effect of molecular packing on the Exciton diffusion length in organic solar cells. Applied Physics Letters, 91(17), 173504.
    [40] Leckner, B. (1978). The spectral distribution of solar radiation at the earth's surface—elements of a model. Solar energy, 20(2), 143-150.
    [41] Peumans, P., Yakimov, A., & Forrest, S. R. (2003). Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7), 3693-3723.
    [42] Blom, P. W., Mihailetchi, V. D., Koster, L. J. A., & Markov, D. E. (2007). Device physics of polymer: fullerene bulk heterojunction solar cells. Advanced Materials, 19(12), 1551-1566.
    [43] Ohkita, H., Cook, S., Astuti, Y., Duffy, W., Tierney, S., Zhang, W., ... & Durrant, J. R. (2008). Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. Journal of the American Chemical Society, 130(10), 3030-3042.
    [44] Brédas, J. L., Norton, J. E., Cornil, J., & Coropceanu, V. (2009). Molecular understanding of organic solar cells: the challenges. Accounts of chemical research, 42(11), 1691-1699.
    [45] Jannat, A., Rahman, M. F., & Khan, M. S. H. (2013). A review study of organic photovoltaic cell. International Journal of Scientific & Engineering Research, 4(1), 1-6.
    [46] Li, N., Lassiter, B. E., Lunt, R. R., Wei, G., & Forrest, S. R. (2009). Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Applied Physics Letters, 94(2), 13.
    [47] Rand, B. P., Genoe, J., Heremans, P., & Poortmans, J. (2007). Solar cells utilizing small molecular weight organic semiconductors. Progress in Photovoltaics: Research and Applications, 15(8), 659-676.
    [48] Kulshreshtha, C., Choi, J. W., Kim, J. K., Jeon, W. S., Suh, M. C., Park, Y., & Kwon, J. H. (2011). Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells. Applied Physics Letters, 99(2), 136.
    [49] Rand, B. P., Burk, D. P., & Forrest, S. R. (2007). Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Physical Review B, 75(11), 115327.
    [50] Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin‐film solar cells: an overview. Progress in Photovoltaics: Research and applications, 12(2‐3), 69-92.
    [51] Qi, B., & Wang, J. (2013). Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 15(23), 8972-8982.
    [52] Pruden, K. G., Sinclair, K., & Beaudoin, S. (2003). Characterization of parylene‐N and parylene‐C photooxidation. Journal of Polymer Science Part A: Polymer Chemistry, 41(10), 1486-1496.
    [53] Gluschke, J. G., Seidl, J., Lyttleton, R. W., Carrad, D. J., Cochrane, J. W., Lehmann, S., ... & Micolich, A. P. (2018). Using ultrathin parylene films as an
    53
    organic gate insulator in nanowire field-effect transistors. Nano letters, 18(7), 4431-4439.

    無法下載圖示 全文公開日期 2025/10/06 (校內網路)
    全文公開日期 2025/10/06 (校外網路)
    全文公開日期 2025/10/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE