簡易檢索 / 詳目顯示

研究生: 陳正穎
Cheng-Ying Chen
論文名稱: 基植於先分群模式之基因演算法與禁忌搜尋法求解多倉儲車輛運途問題
Solving the Multi-depot Vehicle Routing Problems based on the Genetic Algorithm and the Tabu Search with Clustering First Apporach
指導教授: 羅士哲
Shih-Che Lo
口試委員: 蔡鴻旭
Hung-Hsu Tsai
曹譽鐘
Yu-Chung Tsao
羅士哲
Shih-Che Lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 智慧物流管理基因演算法禁忌搜索法具有多倉儲的車輛運途問題增強式掃描法
外文關鍵詞: Intelligent Logistics Management, Genetic Algorithm, Tabu Search Algorithm, Multi-Depot Vehicles Routing Problem, Enhanced Sweep Method
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來網路越來越發達的情況下,越來越多顧客藉由電子商務進行線上購物。企業不僅要提升服務水準來吸引更多的顧客消費外,為了增加企業的總營業利潤,減少營運成本以及產品運送到消費者上所需要的運送成本是相當重要的。為了要配合銷售的成長還有讓運送成本減少,許多企業從單一倉儲模式轉變為多倉儲模式。舉例來說,像是美國以及中國這麼大的國家應用多倉儲模式會優於單一倉儲模式。因此多倉儲問題在學術研究以及現實世界的應用是很重要的研究主題。在工業4.0的模組下,智慧物流和智慧製造的整合變成相當重要的產業升級,像是先進製造科技。
    在本研究中,我們結合增強式掃描法(Enhanced Sweep Method)以及基因演算法(Genetic Algorithm)和禁忌搜索法(Tabu Search Algorithm)來完成兩個混合模型。本研究的目標希望滿足所有限制條件下,達到總成本(運輸及營運)的最小化,藉由此混合模型對多倉儲車輛運輸問題(MDVRP)快速去進行求解。為了驗證及比較兩個混合模型的效能,本研究以15組多倉儲車輛運輸問題的標竿問題來進行實驗。
    實驗結果顯示,本研究所提出的兩個混合模型皆能快速找到近似最佳解,且兩模型的表現在統計上無顯著相異,有著相似的結果。然而混合模型中結合增強式掃描法和禁忌搜索法具有較快的收斂以及計算時間,在處理規模更大的問題時會更加適合;因此,本研究提出的混合模型在處理組合最佳化問題上能有不錯的效能。


    Due to rapid development of the Internet, more and more people go online shopping nowadays by e-commerce. Companies not only need to improve their customer service levels but also hope to increase enterprise’s overall profit by reducing operating costs and transport costs from warehouses to customers. In order to match rapid growth of sales and reduce delivery costs, most enterprises have shifted from single warehouse model to multi-warehouse model. For example, applying multi-warehouse model is better than single warehouse model for large countries such as United States of America and mainland China. Therefore, Multi-Depot Vehicles Routing Problems (MDVRPs) have become important topics for both academic research and real world practice. Following the model of Industry 4.0, the integration of the intelligent logistics and smart manufacturing have become important production advancement such as Advanced Manufacturing Technology (AMT).
    In this thesis, we proposed two hybrid models by combining with the Enhanced Sweep Method, Genetic Algorithm and Tabu Search Algorithm to solve the MDVRPs. The goal of this study is to minimize total cost (transport costs and operation costs) under all constraints. In order to verify and compare the effectiveness of two hybrid models, our research used 15 MDVRP benchmark problems to conduct our experiments.
    From experimental results, the two hybrid models in this thesis can quickly find near-optimal solutions. Moreover, these two models had similar results and no significant difference from statistic point of view. Because the hybrid model combined with the Enhanced Sweep Method and the Tabu Search Algorithm is faster convergence and shorter calculate time to solving the MDVRPs, it is more applicable to solve larger scale problems. Hence, the hybrid models in this thesis have great performance in solving combination optimization problems.

    摘要 I Abstract II ACKNOWLEDGEMENTS III FIGURES VI TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 Research Motivation 1 1.2 Research Objectives 3 1.3 Research Structure 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Logistics Management 5 2.2 Vehicle Routing Problem (VRP) 5 2.3 Multi-Depot Vehicle Routing Problem (MDVRP) 7 2.4 Solving Algorithms for VRP 10 2.5 The Genetic Algorithm 11 2.6 The Tabu Search Algorithm 12 CHAPTER 3 PROBLEM FORMULATION AND TWO HYBRID MODELS 15 3.1 Problem Proposition 15 3.1.1 General VRP 15 3.1.2 Multi-Depot Vehicle Routing Problem (MDVRP) 16 3.2 The Enhanced Sweep Method 17 3.3 The Genetic Algorithm 20 3.4 The Tabu Search Algorithm 24 3.5 Two Hybrid Models 25 CHAPTER 4 COMPUTATIONAL EXPERIMENTS 30 4.1 Preliminary Test 30 4.2 Computational Results 31 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH 36 5.1 Conclusions 36 5.2 Future research 36 REFERENCES 37 Appendix A. The best routing plan of the HM1 for Instances 41 Appendix B. The best routing plan of the HM2 for Instances 42

    Achuthan, N. R., Caccetta, L., & Hill, S. P. (1997). On the vehicle routing problem. Nonlinear Analysis: Theory, Methods & Applications, 30(7), 4277-4288. (DOI: 10.1016/S0362-546X(97)00127-2)
    Alander, J. T. (1992). On optimal population size of genetic algorithms. CompEuro 1992 Proceedings Computer Systems and Software Engineering, 65-70. (DOI: 10.1109/CMPEUR.1992.218485)
    Apte, U. M., & Viswanathan, S. (2000). Effective cross docking for improving distribution efficiencies. International Journal of Logistics, 3(3), 291-302. (DOI: 10.1080/713682769)
    Barbarosoglu, G., & Ozgur, D. (1999). A tabu search algorithm for the vehicle routing problem. Computers & Operations Research, 26(3), 255-270. (DOI: 10.1016/S0305-0548(98)00047-1)
    Brandão, J. (2020). A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem. European Journal of Operational Research, 284(2), 559-571. (DOI: 10.1016/j.ejor.2020.01.008)
    Chávez, J., Escobar, J., Echeverri, M., & Meneses, C. (2018). A heuristic algorithm based on tabu search for vehicle routing problems with backhauls. Decision Science Letters, 7(2), 171-180. (DOI: 10.5267/j.dsl.2017.6.001)
    Christopher, M. (1999). Logistics and Supply Chain Management: Strategies for Reducing Cost and Improving Service. Financial Times: Pitman Publishing. London, ISBN 0273630490. (DOI: 10.1080/13675569908901575)
    Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks: An International Journal, 30(2), 105-119. (DOI: 10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G)
    da Costa, P. R. D. O., Mauceri, S., Carroll, P., & Pallonetto, F. (2018). A genetic algorithm for a green vehicle routing problem. Electronic Notes in Discrete Mathematics, 64, 65-74. (DOI: 10.1016/j.endm.2018.01.008)
    Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91. (DOI: 10.1287/mnsc.6.1.80)
    De Jong, K. A., (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems, doctoral dissertation, University of Michigan, Ann Arbor, MI (University Microfilms No. 76-9381) (Dissertation Abs. Int. 36:5140B).
    Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch problem. Operations Research, 22(2), 340-349. (DOI: 10.1287/opre.22.2.340)
    Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533-549. (DOI: 10.1016/0305-0548(86)90048-11)
    Glover, F. (1990). Tabu search: A tutorial. Interfaces, 20(4), 74-94. (DOI: 10.1287/inte.20.4.74)
    Goel, R., & Maini, R. (2018). A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems. Journal of Computational Science, 25, 28-37. (DOI: 10.1016/j.jocs.2017.12.012)
    Golden, B. L. (1975). Vehicle Routing Problems: Formulations and Heuristic Solution Techniques (No. TR-113). Massachusetts Institute of Technology.
    Ho, W., Ho, G. T., Ji, P., & Lau, H. C. (2008). A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4), 548-557. (DOI: 10.1016/j.engappai.2007.06.001)
    Holland, J. (1975). Adaptation in natural and artificial systems: an introductory analysis with application to biology. Control and Artificial Intelligence.
    Jeon, G., Leep, H. R., & Shim, J. Y. (2007). A vehicle routing problem solved by using a hybrid genetic algorithm. Computers & Industrial Engineering, 53(4), 680-692. (DOI: 10.1016/j.cie.2007.06.031)
    Jia, H., Li, Y., Dong, B., & Ya, H. (2013). An improved tabu search approach to vehicle routing problem. Procedia-Social and Behavioral Sciences, 96, 1208-1217. (DOI: 10.1016/j.sbspro.2013.08.138)
    Karakatič, S., & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot vehicle routing problem. Applied Soft Computing, 27, 519-532. (DOI: 10.1016/j.asoc.2014.11.005)
    Katayama, K., Sakamoto, H., & Narihisa, H. (2000). The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem. Mathematical and Computer Modelling, 31(10-12), 197-203. (DOI: 10.1016/S0895-7177(00)00088-1)
    Knox, J. (1994). Tabu search performance on the symmetric traveling salesman problem. Computers & Operations Research, 21(8), 867-876. (DOI: 10.1016/0305-0548(94)90016-7)
    Kulkarni, R. V., & Bhave, P. R. (1985). Integer programming formulations of vehicle routing problems. European Journal of Operational Research, 20(1), 58-67. (DOI: 10.1016/0377-2217(85)90284-X)
    Lalonde, B.J. & Zinszer, P.H. (1976). Customer service: meaning and measurement. National Council of Physical Distribution Management, Chicago, IL, 156-159.
    Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345-358. (DOI: 10.1016/0377-2217(92)90192-C)
    Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-416. (DOI: 10.1287/trsc.1090.0301)
    Li, Y., Soleimani, H., & Zohal, M. (2019). An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. Journal of Cleaner Production, 227, 1161-1172. (DOI: 10.1016/j.jclepro.2019.03.185)
    Luo, J., & Chen, M.-R. (2014). Improved shuffled frog leaping algorithm and its multi-phase model for multi-depot vehicle routing problem. Expert Systems with Applications, 41(5), 2535-2545. (DOI: 10.1016/j.eswa.2013.10.001)
    Masum, A. K. M., Shahjalal, M., Faruque, F., & Sarker, I. H. (2011). Solving the vehicle routing problem using genetic algorithm. International Journal of Advanced Computer Science and Applications, 2(7), 126-131. (DOI: 10.14569/IJACSA.2011.020719)
    Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., & Herazo-Padilla, N. (2015). A literature review on the vehicle routing problem with multiple depots. Computers & Industrial Engineering, 79, 115-129. (DOI: 10.1016/j.cie.2014.10.029)
    Ramachandiran, R., Ramapraba, R., & Joseph, K. S. (2019). Multi-depot vehicle routing problem using ODV EV based genetic algorithm. International Conference on System, Computation, Automation and Networking (ICSCAN), 1-6. (DOI: 10.1109/ICSCAN.2019.8878869)
    Renaud, J., Laporte, G., & Boctor, F. F. (1996). A tabu search heuristic for the multi-depot vehicle routing problem. Computers & Operations Research, 23(3), 229-235. (DOI: 10.1016/0305-0548(95)O0026-P)
    Shen, Y.-M., & Chen, R.-M. (2017). Optimal multi-depot location decision using particle swarm optimization. Advances in Mechanical Engineering, 9(8), 1–15. (DOI: 10.1177/1687814017717663)
    Surekha, P., & Sumathi, S. (2011). Solution to multi-depot vehicle routing problem using genetic algorithms. World Applied Programming, 1(3), 118-131. (DOI: 10.1007/978-3-540-85152-3_4)
    Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle routing problem. European Journal of Operational Research, 215(1), 126-135. (DOI: 10.1016/j.ejor.2011.06.006)
    Toth, P., & Vigo, D. (Eds.). (2002). The Vehicle Routing Problem. Society for Industrial and Applied Mathematics.
    Weise, T., Podlich, A., & Gorldt, C. (2009). Solving real-world vehicle routing problems with evolutionary algorithms. Natural Intelligence for Scheduling, Planning and Packing Problems, 29-53. (DOI: 10.1007/978-3-642-04039-9_2)
    Wren, A., & Carr, J. D. (1971). Computers in Transport Planning and Operation.
    Yang, Y., Dai, H., & Li, H. (2010). Adaptive genetic algorithm with application for solving traveling salesman problems. International Conference on Internet Technology and Applications, 1-4. (DOI: 10.1007/978-3-540-85984-0_23)

    無法下載圖示 全文公開日期 2025/05/25 (校內網路)
    全文公開日期 2025/05/25 (校外網路)
    全文公開日期 2025/05/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE