簡易檢索 / 詳目顯示

研究生: 陳彥均
Yann-Jiun Chen
論文名稱: 聚乳酸白蠟複材之性能改善與 射出成形降解特性研究
Material Properties and Hydrolytic Degradation Tests of Poly(lactic acid) and Paraffin Wax Blends by Injection Molding
指導教授: 陳炤彰
Chao-Chang Chen
鍾俊輝
Chun-Hui Chung
童立生
Lih-Sheng Turng
口試委員: 陳炤彰
Chao-Chang Chen
鍾俊輝
Chun-Hui Chung
童立生
Lih-Sheng Turng
楊申語
Sen-Yeu Yang
張榮語
Rong-Yeu Chang
陳士勛
Shih-Hsun Chen
Ines Kuehnert
Ines Kuehnert
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 109
中文關鍵詞: 聚乳酸白蠟擠出發泡射出成形水解
外文關鍵詞: Poly(lactic acid), Paraffin Wax, Sub-Critical Gas-Assisted Processing, Injection Molding, Hydrolytic Degradation
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受惠於材料科學與製造科技的發展,聚乳酸(Poly(lactic acid), PLA)及其成品具有高生物相容性,可應用在生物體內;隨著時間的增加,聚乳酸可以被身體吸收並代謝,無須經過二次的手術取出,使其在生物醫學上有重大的突破,但聚乳酸除了上述的優點,尚有潛在的隱憂,如:生物體各部位復原速率的不同,加上需考量患者的代謝速度,倘若患者身體尚未復原前,聚乳酸已經在體內代謝完畢,不但失去原有的支撐與填補缺陷的能力,後續還需要接受額外的重建手術。近年來白蠟(Paraffin wax)製成的支架,應用於導引細胞的流動方向研究與培養,其效果顯著,也無生物相斥性的反應。雖然聚乳酸與白蠟都具有生物相容的特性,但各自的物理化學性質、親水性和降解速率都不同,因此,本研究主要目的是以研究白蠟聚乳酸複合材料,探討其射出成形材料延性、拉伸強度、加工性能改善以及生物可分解性之試驗。
    第一個研究,藉由不同的混鍊方式將聚乳酸與三種不同比例的白蠟混合,量測其流變性質、結晶行為、熱穩定性、機械性質與拉伸斷裂後的形貌,探討不同混鍊方式與白蠟比例的影響。其結果與傳統擠出製程相比,添加白蠟後的聚乳酸,其斷裂伸長率得到大幅改善,發泡擠出的試片也有較均勻的相分佈。同時,其混合物的分散性、機械性能、熱穩定性及材料特性上都有傑出的表現。然而白蠟能有效改善聚乳酸的延展性與流動性,卻與PLA並不相容;且白蠟熔點約在55 °C,在後續加工或是應用上受到限制。有相關文獻指出,90% 線性低密度聚乙烯(Linear Low Density Polyethylene, LLDPE) 與10% 白蠟之相容性最高。因此,接下來的第二個研究為,藉由線性低密度聚乙烯的熔點(123 °C)性質,使添加線性低密度聚乙烯後的聚乳酸/白蠟混合物的熱穩定性、加工性和機械性能有所提升,藉此改善白蠟的加工限制。最後本文的第三個研究,觀察聚乳酸/白蠟混合物在不同溼度與溫度下的降解速度。在水解過程中,水在高分子內扮演著塑化劑角色,誘發隨機斷鏈;高分子之酯鍵在斷裂的同時,會產生羧基與羥基,進而加速材料內部的降解速度。在計算有關降解速率的數學模型中,將催化與非催化的反應一併考量入內。最後,由實驗數據得知,白蠟不但能有效降低水對聚乳酸材料的破壞性滲透,降低其降解速率外,含有白蠟的聚乳酸試片在降解一段時間後,仍保有一定的機械性質及較佳的表面形貌。因聚乳酸白蠟之複材仍保有生物相容性,未來可應用在組織工程(Tissue Engineering)上,做細胞培養與體內降解之研究。


    Nowadays, Poly(lactic acid) (PLA) is a popular material in biomedical science. It is a biodegradable, bioresorbable, bioerodible, and bioabsorbable material in vivo. However, if the degradation rate of the polymer is too fast, not only will it cease to provide the necessary mechanical support for the tissue, the surrounding tissue cannot eliminate the acid by-products, resulting in an inflammatory or toxic response. Recently, paraffin wax (PW) is printed as cell pattern to guide cell proliferation and the biocompatibility is quite significant.
    Therefore, this study aims to develop PLA/PW blends to investigate the ductility, tensile strength, processiblity of PLA/PW blends and the hydrolytic degradation of microinjection molding samples.
    There are three parts in this study, in the first study, investigating PLA/PW blends with different amounts of PW. To observe the effects of the different melt compounding processes and the effects of paraffin wax added to the blends, the thermal behavior, mechanical performance and morphology have been charac¬terized. The results show that the addition of paraffin wax yields tre¬men¬dous improvements in elongation com¬pared to neat PLA. In addition, samples made by the sub-critical gas-assisted processing (SGAP) extru¬sion method exhibit more homogeneous phase morphologies and also improved paraffin wax dispersion, better tensile properties and thermal stability, and more con¬sistent material properties as compared to their conventionally compounded counterparts. However, PLA and PW are immiscible, thus the low melting temperature of PW (at around 55 °C) poses some processing difficulties and/or practical application limitations for the PLA/PW blends. Linear low density polyethylene (LLDPE) and PW exhibit miscibility at a 90%/10% weight ratio and a melting temperature of 123 °C. Hence, in the second study, LLDPE was added to the PLA/PW blends to increase their thermal stability, processability, and elongation-at-break. The third study tested the hydrolytic rate of neat PLA and PLA/PW blends at elevated temperature and relative humidity (RH). During hydrolytic degradation, the plasticizer effect of water in the polymer matrix cause random chain scission, leading to the breakage of ester links. Meanwhile, the ester groups generate carboxyl end-groups that increase the hydrolytic degradation in the polymer matrix. The results reveal that paraffin wax is able to resist the water permeability and obtain a lower hydrolysis rate than neat PLA. PLA/PW blend still belongs to biodegradable and biocompatible materials. For future works, it can apply in tissue engineering to do cell culture and investigate the degradation test in vivo.

    中文摘要 II Abstract III Acknowledgements IV Table of Contents V Figure Captions VII Table Captions 10 Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and Methods 3 1.3 Literature Review 4 1.3.1 Materials 4 1.3.2 Technique 5 1.3.3 PLA Applications 10 1.3.4 Degradation Mechanism of PLA 11 1.4 Framework 13 Chapter 2 Experiments 14 2.1 PLA, PW, and LLDPE 14 2.2 Preparation 15 2.3 Processing 18 2.4 Characterization 19 2.4.1 Material Property 19 2.4.2 Molecular Weight 20 2.4.3 Thermal Behavior 20 2.4.4 Mechanical Performance 22 2.4.5 Morphology 22 Chapter 3 Poly(lactic acid) and Paraffin Wax Blends Prepared by Conventional Melt Com-pounding and Sub-Critical Gas-Assisted Pro-cessing (SGAP) 23 3.1 Preparation and Processing PLA/PW Blends 23 3.2 Results and Discussion 26 3.2.1 Effect of SGAP on Melt Compounding 26 3.2.2 Thermal Performance 27 3.2.3 Mechanical Properties 33 3.2.4 Phase Morphology 36 3.3 Summary 44 Chapter 4 Improving the Processibility of Poly-(lactic acid)/Linear Low Density Polyethylene/ Paraffin Wax Blends by Sub-Critical Gas-Assisted Processing 45 4.1 Material and Fabrication of PLA/PW/LLDPE Blends 45 4.2 Results and Discussion 47 4.2.1 Thermal Performance 47 4.2.2 Mechanical Properties 54 4.2.3 Phase Morphology 56 4.3 Summary 63 Chapter 5 Hydrolytic Degradation of Poly(lactic acid) and Paraffin Wax Blends at Elevated Temperature and Humidity 64 5.1 Degradation Test Overview 64 5.2 Modeling Hydrolytic Degradation 65 5.3 Results and Discussion 68 5.3.1 Molecular Weight 68 5.3.2 Thermal Performance 74 5.3.3 Mechanical Properties 76 5.3.4 Morphology 80 5.4 Summary 83 Chapter 6 Conclusions and Future Works 84 6.1 Conclusions 84 6.2 Future Work 85 References 86 Curriculum Vitae 96

    1. M. Aoki, et al., Tensile properties and biological response of poly (l‐lactic acid) felt graft: An experimental trial for rotator‐cuff reconstruction. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 71(2): p. 252-259.
    2. Y. Kinoshita and H. Maeda, Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. The Scientific World Journal, 2013. 2013.
    3. Y. Matsusue, et al., Biodegradable screw fixation of rabbit tibia proximal osteotomies. Journal of Applied Biomaterials, 1991. 2(1): p. 1-12.
    4. Y. Ikada, et al., Enhancement of bone formation by drawn poly (L‐lactide). Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1996. 30(4): p. 553-558.
    5. T. Mekonnen, et al., Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 2013. 1(43): p. 13379-13398.
    6. N. Kawamoto, et al., Nucleating agent for poly(L-lactic acid) - An optimization of chemical structure of hydrazide compound for advanced nucleation ability. Journal of Applied Polymer Science, 2007. 103(1): p. 198-203.
    7. R.M. Rasal, A.V. Janorkar, and D.E. Hirt, Poly (lactic acid) modifications. Progress in polymer science, 2010. 35(3): p. 338-356.
    8. B. Gupta, N. Revagade, and J. Hilborn, Poly (lactic acid) fiber: an overview. Progress in polymer science, 2007. 32(4): p. 455-482.
    9. M. Elsawy, C. JdC, and C.-G. Sanporean, Investigation of jojoba oil-wax as a plasticizer for poly (lactic acid). Optoelectron Adv Mater, 2014. 8(1-2): p. 109-14.
    10. C. Chung, et al., Fabrication of PDMS passive micromixer by lost-wax casting. International Journal of Precision Engineering and Manufacturing, 2015. 16(9): p. 2033-2039.
    11. C. Chung and Y.-J. Chen, Analysis of a miniaturized 3D PDMS channel deflector fabricated using lost-wax casting. The International Journal of Advanced Manufacturing Technology, 2018. 94(5-8): p. 2381-2391.
    12. D. Heaney, Handbook of Metal Injection Molding. First ed. 2012: Woodhead Publishing.
    13. S. Pattnaik, D.B. Karunakar, and P.K. Jha, Multi-characteristic optimization of wax patterns in the investment casting process using grey–fuzzy logic. The International Journal of Advanced Manufacturing Technology, 2013. 67(5): p. 1577-1587.
    14. K. Kaygusuz and A. Sari, Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material. Energy Sources, 2005. 27(16): p. 1535-1546.
    15. J. Wang, S.J. Severtson, and A. Stein, Significant and Concurrent Enhancement of Stiffness, Strength, and Toughness for Paraffin Wax Through Organoclay Addition. Advanced Materials, 2006. 18(12): p. 1585-1588.
    16. P. Thomas-Vielma, et al., Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society, 2008. 28(4): p. 763-771.
    17. R.M. German, K.F. Hens, and S.-T.P. Lin, Key issues in powder injection molding. American Ceramic Society Bulletin, 1991. 70(8): p. 1294-1302.
    18. M.M. Farid, et al., A review on phase change energy storage: materials and applications. Energy conversion and management, 2004. 45(9-10): p. 1597-1615.
    19. B. He, V. Martin, and F. Setterwall, Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy, 2004. 29(11): p. 1785-1804.
    20. S.C. Shit and P.M. Shah, Edible polymers: challenges and opportunities. Journal of Polymers, 2014. 2014.
    21. E. Baldwin, et al., Use of lipids in edible coatings for food products. Food Technol, 1997. 51(6): p. 56-62.
    22. F. Cataldo, On the ozone protection of polymers having non-conjugated unsaturation. Polymer degradation and stability, 2001. 72(2): p. 287-296.
    23. F. Ignatz-Hoover, et al., Chemical additives migration in rubber. Rubber chemistry and technology, 2003. 76(3): p. 747-768.
    24. D.J. Kind and T.R. Hull, A review of candidate fire retardants for polyisoprene. Polymer Degradation and Stability, 2012. 97(3): p. 201-213.
    25. M. Nouman, et al., Additive blooming in polymer materials: Consequences in the pharmaceutical and medical field. Polymer Degradation and Stability, 2017. 143: p. 239-252.
    26. C.C.W. Tse, et al., Utilising inkjet printed paraffin wax for cell patterning applications. 2016.
    27. C.C.W. Tse and P.J. Smith, Inkjet printing for biomedical applications, in Cell-Based Microarrays. 2018, Springer. p. 107-117.
    28. D. Hutmacher, J. Goh, and S. Teoh, An introduction to biodegradable materials for tissue engineering applications. ANNALS-ACADEMY OF MEDICINE SINGAPORE, 2001. 30(2): p. 183-191.
    29. J.C. Middleton and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335-2346.
    30. Y.-J. Chen, et al., Mechanical properties and thermal characteristics of poly (lactic acid) and paraffin wax blends prepared by conventional melt compounding and sub-critical gas-assisted processing (SGAP). European Polymer Journal, 2018. 98: p. 262-272.
    31. Y.J. Chen, et al., Improving the processibility and mechanical properties of poly (lactic acid)/linear low‐density polyethylene/paraffin wax blends by subcritical gas‐assisted processing. Polymer Engineering & Science.
    32. R.E. Drumright, P.R. Gruber, and D.E. Henton, Polylactic acid technology. Advanced materials, 2000. 12(23): p. 1841-1846.
    33. J.A. Santos, Bioresorbable Polymers for Tissue Engineering. 2010.
    34. L. Yu, Biodegradable polymer blends and composites from renewable resources. 2009: John Wiley & Sons.
    35. I. Kühnert, et al., Processing of poly (lactic acid), in Industrial Applications of Poly (lactic acid). 2017, Springer. p. 1-33.
    36. E. Taiwo, J. Otolorin, and T. Afolabi, Crude Oil Transportation: Nigerian Niger Delta Waxy Crude. 2012.
    37. Y.V. Kissin, Polyethylene. Kirk-Othmer Encyclopedia of Chemical Technology, 2013. 17: p. 702-784.
    38. K.S. Anderson, K.M. Schreck, and M.A. Hillmyer, Toughening polylactide. Polymer Reviews, 2008. 48(1): p. 85-108.
    39. N. LLC, NatureWorks PLA Processing Guide for Biaxially Oriented Film,. 2006, Minnetonka, MN.
    40. D.W. Grijpma, et al., Improvement of the mechanical properties of poly (D, L‐lactide) by orientation. Polymer international, 2002. 51(10): p. 845-851.
    41. Y. Srithep, P. Nealey, and L.S. Turng, Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection‐molded poly (lactic acid). Polymer Engineering & Science, 2013. 53(3): p. 580-588.
    42. G. Perego, G.D. Cella, and C. Bastioli, Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. Journal of Applied Polymer Science, 1996. 59(1): p. 37-43.
    43. M. Yasuniwa, et al., Thermal analysis of the double‐melting behavior of poly (L‐lactic acid). Journal of Polymer Science Part B: Polymer Physics, 2004. 42(1): p. 25-32.
    44. D. Bigg. Effect of copolymer ratio on the crystallinity and properties of polylactic acid copolymers. in Technical papers of the annual technical conference-Society of plastics engineers incorporated. 1996. SOCIETY OF PLASTICS ENGINEERS INC.
    45. R. Bopp and J. Whelan, Method for producing semicrystalline polylactic acid articles. 2003, Google Patents.
    46. R.A. Auras, S.P. Singh, and J.J. Singh, Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science: An International Journal, 2005. 18(4): p. 207-216.
    47. Z.-M. Huang, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
    48. C. Zhang, et al., Incorporation of poly (ethylene glycol) grafted cellulose nanocrystals in poly (lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Materials Science and Engineering: C, 2015. 49: p. 463-471.
    49. L.-T. Lim, R. Auras, and M. Rubino, Processing technologies for poly (lactic acid). Progress in polymer science, 2008. 33(8): p. 820-852.
    50. N. Reddy, D. Nama, and Y. Yang, Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 2008. 93(1): p. 233-241.
    51. G. Biresaw and C. Carriere, Interfacial tension of poly (lactic acid)/polystyrene blends. Journal of Polymer Science Part B: Polymer Physics, 2002. 40(19): p. 2248-2258.
    52. K. Bernland and P. Smith, Nucleating Polymer Crystallization with Poly(tetrafluoroethylene) Nanofibrils. Journal of applied polymer science, 2009. 114: p. 281-287.
    53. T. Takayama and M. Todo, Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. Journal of Materials Science, 2006. 41(15): p. 4989-4992.
    54. E. Richards, et al., Biodegradable composite foams of PLA and PHBV using subcritical CO 2. Journal of Polymers and the Environment, 2008. 16(4): p. 258-266.
    55. H.-J. Jin, et al., Blending of poly (L-lactic acid) with poly (cis-1, 4-isoprene). European Polymer Journal, 2000. 36(1): p. 165-169.
    56. H. Becker and C. Gartner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.
    57. A. Huang, et al., Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene‐reinforced poly (lactic acid) composites. Polymer Engineering & Science, 2017. 57(5): p. 570-580.
    58. R.A. Auras, et al., Poly (lactic acid): synthesis, structures, properties, processing, and applications. Vol. 10. 2011: John Wiley & Sons.
    59. R. Tokoro, et al., How to improve mechanical properties of polylactic acid with bamboo fibers. Journal of Materials Science, 2008. 43(2): p. 775-787.
    60. M. Huda, et al., Wood‐fiber‐reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science, 2006. 102(5): p. 4856-4869.
    61. N. Teramoto, et al., Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability, 2004. 86(3): p. 401-409.
    62. B. Bax and J. Müssig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites science and technology, 2008. 68(7-8): p. 1601-1607.
    63. R. Hu and J.-K. Lim, Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. Journal of Composite Materials, 2007. 41(13): p. 1655-1669.
    64. P. Zhao, et al. Effect of phosphorus-containing modified magnesium hydroxide on the mechanical properties and flammability of PLA/MH composites. in AIP Conference Proceedings. 2019. AIP Publishing.
    65. D.-Y. Wang, et al., Method for simultaneously improving the thermal stability and mechanical properties of poly (lactic acid): effect of high-energy electrons on the morphological, mechanical, and thermal properties of PLA/MMT nanocomposites. Langmuir, 2012. 28(34): p. 12601-12608.
    66. A. Kramschuster and L.S. Turng, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010. 92(2): p. 366-376.
    67. H.-Y. Mi, et al., Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Materials Science and Engineering: C, 2013. 33(8): p. 4767-4776.
    68. M. Mochizuki, Synthesis, properties and structure of polylactic acid fibres, in Handbook of Textile Fibre Structure: Fundamentals and Manufactured Polymer Fibres. 2009, Elsevier. p. 257-275.
    69. Y. Doi and A. Steinbüchel, Biopolymers, polyesters III-applications and commercial products. Vol. 4. 2002: Wiley-Blackwell.
    70. C.R. Gajjar and M.W. King, Resorbable fiber-forming polymers for biotextile applications. 2014: Springer.
    71. S.M. Li, H. Garreau, and M. Vert, Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine, 1990. 1(3): p. 123-130.
    72. M. Vert, S. Li, and H. Garreau, Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomaterials Science, Polymer Edition, 1995. 6(7): p. 639-649.
    73. A. Copinet, et al., Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere, 2004. 55(5): p. 763-773.
    74. G. Pitt, et al., Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials, 1981. 2(4): p. 215-220.
    75. M. Malin, et al., Biodegradable lactone copolymers. II. Hydrolytic study of ε‐caprolactone and lactide copolymers. Journal of applied polymer science, 1996. 59(8): p. 1289-1298.
    76. M.-A. Paul, et al., Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer degradation and stability, 2005. 87(3): p. 535-542.
    77. Q. Zhou and M. Xanthos, Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polymer degradation and stability, 2008. 93(8): p. 1450-1459.
    78. H. Tsuji and Y. Ikada, Properties and morphology of poly (L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly (L-lactide) in phosphate-buffered solution. Polymer Degradation and Stability, 2000. 67(1): p. 179-189.
    79. I. Grizzi, et al., Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials, 1995. 16(4): p. 305-311.
    80. S. Li and S. McCarthy, Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactide)s. Macromolecules, 1999. 32(13): p. 4454-4456.
    81. A. Göpferich, Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114.
    82. F. He, et al., Enzyme-catalyzed polymerization and degradation of copolyesters of ε-caprolactone and γ-butyrolactone. Polymer, 2005. 46(26): p. 12682-12688.
    83. A.M. Harris and E.C. Lee, Heat and humidity performance of injection molded PLA for durable applications. Journal of applied polymer science, 2010. 115(3): p. 1380-1389.
    84. A.K. Whittaker, 1H NMR studies of the radiation-induced crosslinking of poly (ethylene). Radiation Physics and Chemistry, 1996. 48(5): p. 601-604.
    85. P.-W.S. Chum, et al., Ethylene polymer fiber made from ethylene polymer blends. 2001, Google Patents.
    86. J.W. Lee and C.B. Park, Use of Nitrogen as a Blowing Agent for the Production of Fine‐Celled High‐Density Polyethylene Foams. Macromolecular Materials and Engineering, 2006. 291(10): p. 1233-1244.
    87. T.K. Ellingham Jr, Sub-Critical Gas-Assisted Processing of Polymer Nanocomposites and Blends. 2019, The University of Wisconsin-Madison.
    88. S.-T. Lee and C.B. Park, Foam extrusion: principles and practice. Second ed. 2014: CRC press.
    89. P.P. M. Fischer, M. A. d. Landwehr, I. Kühnert, Weld Line Strength of Micro Injection Molded Tensile Rods, in PPS 34. 2018: Taipei, Taiwan.
    90. A. Islam, et al., Two-component micro injection moulding for hearing aid applications. The International Journal of Advanced Manufacturing Technology, 2012. 62(5-8): p. 605-615.
    91. C. Simoes, J. Viana, and A. Cunha, Mechanical properties of poly (ε‐caprolactone) and poly (lactic acid) blends. Journal of Applied Polymer Science, 2009. 112(1): p. 345-352.
    92. J.F. Turner, et al., Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2004. 75(1): p. 257-268.
    93. D. Garlotta, A literature review of poly (lactic acid). Journal of Polymers and the Environment, 2001. 9(2): p. 63-84.
    94. R. Auras, B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular bioscience, 2004. 4(9): p. 835-864.
    95. G. Mittal, et al., A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 11-25.
    96. S. Li, et al., Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Composites Part B: Engineering, 2018. 153: p. 277-284.
    97. S. Bourbigot, et al., Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polymers for Advanced Technologies, 2011. 22(1): p. 30-37.
    98. K.S. Anderson and M.A. Hillmyer, The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 2004. 45(26): p. 8809-8823.
    99. C. Chung and Y.-J. Chen, Analysis of a miniaturized 3D PDMS channel deflector fabricated using lost-wax casting. The International Journal of Advanced Manufacturing Technology, 2017.
    100. T. Ellingham, L. Duddleston, and L.-S. Turng, in Society of Plastics Engineering-TPO Conference. 2016: Detroit.
    101. T. Ellingham, L. Duddleston, and L.-S. Turng, Sub-critical gas-assisted processing using CO 2 foaming to enhance the exfoliation of graphene in polypropylene+ graphene nanocomposites. Polymer, 2017. 117: p. 132-139.
    102. M. McHugh and V. Krukonis, Supercritical fluid extraction: principles and practice. 2013: Elsevier.
    103. T. A. Osswald and G. Menges, Material Science of Polymers for Engineers. Third ed. 2012, Munich: Carl Hanser Verlag.
    104. T.T. Fred, On the Coefficient of Viscous Traction and Its Relation to that of Viscosity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1906. 77(519): p. 426-440.
    105. Z. Tadmor, Forces in Dispersive Mixing. Industrial & Engineering Chemistry Fundamentals, 1976. 15(4): p. 346-348.
    106. J. Gulmine, et al., Polyethylene characterization by FTIR. Polymer Testing, 2002. 21(5): p. 557-563.
    107. B. Li, et al., Fabrication and Properties of Microencapsulated Paraffin@SiO2 Phase Change Composite for Thermal Energy Storage. ACS Sustainable Chemistry & Engineering, 2013. 1(3): p. 374-380.
    108. A.M. Harris and E.C. Lee, Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 2008. 107(4): p. 2246-2255.
    109. F. Signori, M.-B. Coltelli, and S. Bronco, Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polymer degradation and stability, 2009. 94(1): p. 74-82.
    110. S. Bandi and D.A. Schiraldi, Glass transition behavior of clay aerogel/poly (vinyl alcohol) composites. Macromolecules, 2006. 39(19): p. 6537-6545.
    111. S. Lee, L. Kareko, and J. Jun, Study of thermoplastic PLA foam extrusion. Journal of cellular plastics, 2008. 44(4): p. 293-305.
    112. M. Nofar, et al., The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics, 2012. 48(3): p. 271-287.
    113. A. Ameli, et al., Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors. Chemical Engineering Journal, 2015. 262: p. 78-87.
    114. H. S. Mpanza and A.S. Luyt, Influence of Different Waxes on the Physical Properties of Linear Low-density Polyethylene. South African Journal of Chemistry 2006. 59: p. 48-54.
    115. P. Flory and M. Volkenstein, Statistical mechanics of chain molecules. 1969, Wiley Online Library.
    116. A.J. Kinloch and R.J. Young, Fracture Behaviour of Polymers. First ed. 1983, London: Applied Science Publishers.
    117. B.J. Goodno and J.M. Gere, Mechanics of Materials. Eighth ed. 2016: Cengage Learning.
    118. R.A. Pearson and A.F. Yee, Toughening mechanisms in thermoplastic-modified epoxies: 1. modification using poly (phenylene oxide). Polymer, 1993. 34(17): p. 3658-3670.
    119. M.A. Meyers and K.K. Chawla, Mechanical behavior of materials. Second ed. 2009: Cambridge University Press Cambridge.
    120. S.-Y. Fu, et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 2008. 39(6): p. 933-961.
    121. B. Pukanszky and G. VÖRÖS, Mechanism of interfacial interactions in particulate filled composites. Composite Interfaces, 1993. 1(5): p. 411-427.
    122. E. Reynaud, et al., Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer, 2001. 42(21): p. 8759-8768.
    123. M. Sumita, et al., Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. Journal of Macromolecular Science, Part B: Physics, 1983. 22(4): p. 601-618.
    124. Q. Zhang, et al., Effect of particle size on the properties of Mg (OH) 2‐filled rubber composites. Journal of Applied Polymer Science, 2004. 94(6): p. 2341-2346.
    125. L. Bushnell and H. Haas, The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 1941. 41(5): p. 653-673.
    126. A.B. Strong, Plastics: materials and processing. 2006: Prentice Hall.
    127. Z. Bartczak, A. Galeski, and M. Pracella, Spherulite nucleation in blends of isotactic polypropylene with high-density polyethylene. Polymer, 1986. 27(4): p. 537-543.
    128. Y.-J. Chen, et al., Mechanical properties and thermal characteristics of poly(lactic acid) and paraffin wax blends prepared by conventional melt compounding and sub-critical gas-assisted processing (SGAP). European Polymer Journal, 2018. 98: p. 262-272.
    129. A. Sarı, Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 2004. 45(13): p. 2033-2042.
    130. H. Inaba and P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat and Mass Transfer, 1997. 32(4): p. 307-312.
    131. F. Chen and M.P. Wolcott, Miscibility studies of paraffin/polyethylene blends as form-stable phase change materials. European Polymer Journal, 2014. 52: p. 44-52.
    132. F. Chen and M. Wolcott, Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Solar Energy Materials and Solar Cells, 2015. 137: p. 79-85.
    133. T.P. Gumede, et al., The influence of paraffin wax addition on the isothermal crystallization of LLDPE. Journal of Applied Polymer Science, 2017. 134(2).
    134. I. Krupa, G. Miková, and A. Luyt, Phase change materials based on low-density polyethylene/paraffin wax blends. European Polymer Journal, 2007. 43(11): p. 4695-4705.
    135. D. Kim, et al., Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films. Journal of Polymer Research, 2015. 22(2): p. 19.
    136. M.A. AlMaadeed, et al., Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arabian Journal of Chemistry, 2015. 8(3): p. 388-399.
    137. J.A. Molefi, A.S. Luyt, and I. Krupa, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer–Tropsch paraffin wax. Thermochimica Acta, 2010. 500(1–2): p. 88-92.
    138. L.H. Sperling, Introduction to physical polymer science. 2005: John Wiley & Sons.
    139. M. Molaba, D. Dudic, and A. Luyt, Influence of the presence of medium-soft paraffin wax on the morphology and properties of iPP/silver nanocomposites. 2015.
    140. C.L. Beyler and M.M. Hirschler, Thermal decomposition of polymers. SFPE handbook of fire protection engineering, 2002. 2: p. 32.
    141. K.A. Moly, et al., Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. European Polymer Journal, 2005. 41(6): p. 1410-1419.
    142. A. Peacock, Handbook of polyethylene: structures: properties, and applications. 2000: CRC Press.
    143. P.C. Dartora, R.M.C. Santana, and A.C.F. Moreira, The influence of long chain branches of LLDPE on processability and physical properties. Polímeros, 2015. 25(6): p. 531-539.
    144. J.P. Hogan, C.T. Levett, and R.T. Werkman, Melt elasticity in linear PE containing long branches. SPE Journal, 1967. 23(11): p. 87-90.
    145. M. Chanda, Introduction to polymer science and chemistry: a problem-solving approach. 2013: CRC Press.
    146. K.S. Anderson, S.H. Lim, and M.A. Hillmyer, Toughening of polylactide by melt blending with linear low‐density polyethylene. Journal of Applied Polymer Science, 2003. 89(14): p. 3757-3768.
    147. A. Dasari and R. Misra, The role of micrometric wollastonite particles on stress whitening behavior of polypropylene composites. Acta materialia, 2004. 52(6): p. 1683-1697.
    148. B.S. Ndazi and S. Karlsson, Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 2011. 5(2).
    149. G. Yew, et al., Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polymer Degradation and Stability, 2005. 90(3): p. 488-500.
    150. S. Lyu, R. Sparer, and D. Untereker, Analytical solutions to mathematical models of the surface and bulk erosion of solid polymers. Journal of Polymer Science Part B: Polymer Physics, 2005. 43(4): p. 383-397.
    151. K. Zhu, et al., Synthesis, properties, and biodegradation of poly (1, 3-trimethylene carbonate). Macromolecules, 1991. 24(8): p. 1736-1740.
    152. H. Antheunis, et al., Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromolecules, 2010. 11(4): p. 1118-1124.
    153. K.J. Laidler, The development of the Arrhenius equation. Journal of Chemical Education, 1984. 61(6): p. 494.
    154. S.N. Chesler and S.P. Cram, Iterative curve fitting of chromatographic peaks. Analytical Chemistry, 1973. 45(8): p. 1354-1359.
    155. S. Podzimek, T. Vlcek, and C. Johann, Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers. Journal of applied polymer science, 2001. 81(7): p. 1588-1594.
    156. E. Fischer, H.J. Sterzel, and G. Wegner, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere, 1973. 251(11): p. 980-990.
    157. X. Zhang, et al., Morphological behaviour of poly (lactic acid) during hydrolytic degradation. Polymer Degradation and Stability, 2008. 93(10): p. 1964-1970.
    158. B. Gupta, N. Revagade, and J. Hilborn, In vitro degradation of dry‐jet‐wet spun poly (lactic acid) monofilament and knitted scaffold. Journal of applied polymer science, 2007. 103(3): p. 2006-2012.
    159. V.K. Holm, S. Ndoni, and J. Risbo, The stability of poly (lactic acid) packaging films as influenced by humidity and temperature. Journal of food science, 2006. 71(2): p. E40-E44.
    160. F. von Burkersroda, L. Schedl, and A. Göpferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231.
    161. M. Vert, et al., Bioresorbability and biocompatibility of aliphatic polyesters. Journal of materials science: Materials in medicine, 1992. 3(6): p. 432-446.
    162. S. Meister, et al., Measurement of mechanical material properties for micro parts on injection moulded micro tensile bars. Journal of Plastics Technology, 2013. 9(1): p. 74.
    163. P. Dimauro, H. Paris, and M. Fath, Wax protection. Rubber Chemistry and Technology, 1979. 52(5): p. 973-984.
    164. P. Bombelli, C.J. Howe, and F. Bertocchini, Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 2017. 27(8): p. R292-R293.

    無法下載圖示 全文公開日期 2024/08/02 (校內網路)
    全文公開日期 2024/08/02 (校外網路)
    全文公開日期 2024/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE