簡易檢索 / 詳目顯示

研究生: Dyka Rahayu Meyla Sari
Dyka - Rahayu Meyla Sari
論文名稱: 化學成分及介面活性劑種類對噴霧熱解法製備介孔生物活性玻璃之生物活性影響之研究
Influence of Chemical Composition and Surfactant Type on the Bioactivity of Spray Pyrolyzed Mesoporous Bioglass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 顏怡文
Yee-wen Yen
段維新
Wei-Hsing Tuan
陳錦毅
Chin-Yi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 162
中文關鍵詞: 介孔生物活性玻璃噴霧熱解化學組成介面活性劑生物活性
外文關鍵詞: Mesoporous bioactive glass, spray pyrolysis, chemical composition, surfactants, bioactivity
相關次數: 點閱:332下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

介孔生物活性玻璃(MBGs) 近年來被廣泛應用於骨植入物、藥物載體以及補牙骨粉等。前人研究指出:化學組成及比表面積為影響生物活性玻璃的生物活性之兩大因素;而此二者可分別由調整矽(Si) 與鈣(Ca) 的比例以及改變顆粒形貌來提升其生物活性。此外,使用介面活性劑為模板可製備出介孔結構進而增加比表面積。本研究藉由改變SiO2-CaO-P2O5成分比及添加不同種類之介面活性劑,使用噴霧熱解法成功合成出介孔生物活性玻璃 (MBGs)。此研究致力於探討不同化學組成以及介面活性劑種類對MBG生物活性的影響。將製備後的粉體浸泡於模擬人體體液(SBF) 中,測試其生物活性。利用X光繞射儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR) 、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、氮氣吸/脫附分析儀(BET) 分別來鑑定相變化、化學鍵結、表面形貌、內部結構及比表面積。本研究中發現介孔顆粒有球形及皺摺形兩種形貌。58S 、68S 和 76S MBG 粉體浸泡於SBF 中12 小時內即可生成氫氧基磷灰石(HA);反之85S浸泡三天後亦無任何氫氧基磷灰石生成。藉由分析氫氧基磷灰石的峰值強度可推斷出:使用任一種介面活性劑製備MBG,其生物活性皆為68S> 58S> 76S> 85S;而在相同成分下,使用不同種類介面活性劑製備出MBG的生物活性則為L121系MBGs > F127系MBGs > P123系MBGs。


Mesoporous bioactive glasses (MBGs) have recently been applied to numerous applications such as bone implants, drug carriers and tooth repairing pastes. Previous studies indicate that the chemical composition and surface area of MBGs are two important parameters which influence the bioactivity of bioactive glasses. Controlling the chemical composition and surface area by modifying the ratio of Si:Ca and particle morphology are necessary in order to achieve high bioactivity. In addition, surfactants as a role template in the preparation of bioactive glasses created the mesoporous structure and increased the surface area. MBGs with various compositions of SiO2-CaO-P2O5 and different surfactant types have been successfully synthesized using spray pyrolysis technique. In this study, the effects of different chemical composition and surfactant type on the bioactivity of MBG samples were studied. Simulated body fluid (SBF) was used as a medium to conduct the bioactivity test with different immersing times. Various characterization methods, including X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and Brunaeur-Emmet-Teller method have been used to characterize the phase compositions, chemical bonding, surface morphologies, inner structures, and surface area, respectively. In summary, spherical and wrinkled mesoporous particle shapes were observed. 58S, 68S and 76S MBG powders have the ability to form apatite phase within 12h of immersion time; however all 85S MBG powders show no apatite phase even after 3 days immersed in the SBF solution. Hydroxyl apatite peak area intensity analysis indicate that the bioactivity order of MBGs prepared using all surfactant types is 68S>58S>76S>85S. From the surfactant aspect, the bioactivity order for all MBG compositions is L121-treated MBGs>F127-treated MBGs>P123-treated-MBGs. Larger pore size in the L121-treated MBGs induces faster HA formation rate.

摘要 I ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VI LISTS OF TABLES IX LISTS OF FIGURES XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 5 2.1 Bioceramic and Bioactive Materials 5 2.2 Bioactive Glasses 12 2.2.1 Compositions of Bioactive Glass 12 2.2.2 Bioactive Glass Bonding Mechanism 16 2.3 Mesoporous Bioactive Glasses 19 2.3.1 Introduction 19 2.3.2 Surfactant 21 2.3.3 Micelle Formation and Structure 23 2.3.4 Non-ionic Triblock Copolymer (Plurounics) 28 2.4 Fabrication of Bioactive Glass 29 2.4.1 Conventional Method 29 2.4.2 Sol-Gel Method 31 2.4.3 Spray Pyrolysis 33 2.5 Spray Pyrolysis 34 2.5.1 Schematic Equipment of Spray Pyrolysis 35 2.5.2 Atomization Stage 35 2.5.3 Thermal Stage 36 2.5.4 Electrostatic Deposition 37 2.5.5 Particle Formation Mechanism 38 CHAPTER 3 MATERIAL AND EXPERIMENTAL PROCEDURE 41 3.1 Chemicals 41 3.2 Equipments 42 3.3 Experimental Procedure and Material Preparation 42 3.4 Characterization of the Materials 45 3.4.1 X-Ray Diffraction (XRD) 46 3.4.2 Scanning Electron Microscope (SEM) 46 3.4.3 Transmission Electron Microscope (TEM) 47 3.4.4 Fourier Transform Infrared (FTIR) 48 3.4.5 Nitrogen Adsorption / Desorption, Brunaeur Emmet Teller 48 3.5 Particle Size, Particle Shape and Pore size Distribution Calculation 49 3.6 In-vitro Bioactivity Test 49 CHAPTER 4 RESULTS AND DISCUSSION 51 4.1 Results 51 4.1.1 Characterization of As-Received Spray Pyrolysis Powders 51 4.1.1.1 Crystal Structure 51 4.1.1.2 Chemical Bonding 58 4.1.2 Characterization of As-prepared MBG Powders 62 4.1.2.1 Crystal Structure of As-prepared MBG Powders 62 4.1.2.2 Chemical Bonding of As-prepared MBG Powders 69 4.1.2.3 Morphology of As-prepared MBG Powders 71 4.1.2.4 Specific Surface Area of As-prepared MBG Powders 89 4.1.3 Characterization after Bioactivity Test 91 4.1.3.1 Crystal structure after Bioactivity Test 91 4.1.3.2 Morphology after Bioactivity Test 105 4.2 Discussion 114 4.2.1 Characterization of MBG powders 114 4.2.1.1 Remained Carbon during Spray Pyrolysis 114 4.2.1.2 Crystal Structure of MBG powders 115 4.2.1.3 Morphology of MBG Powders 117 4.2.2 Particle and Pore Formation Mechanism 119 4.2.3 Specific Surface Area of MBG Powders 125 4.2.4 Bioactivity of MBG Powders 127 4.2.4.1 Crystal Structure after of MBGs after Bioactivity Test 127 4.2.4.1 Morphology of MBGs after bioactivity test 133 CHAPTER 5 CONCLUSIONS 134 CHAPTER 6 FUTURE WORKS 135 REFERENCES 136

[1] Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971. 5(6): p. 117-141.
[2] Li, R., A.E. Clark, and L.L. Hench, An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater, 1991. 2(4): p. 231-9.
[3] Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510.
[4] Xia, W. and J. Chang, Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. Journal of Non-Crystalline Solids, 2008. 354(12–13): p. 1338-1341.
[5] Vallet-Regi, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108.
[6] Hench, L.L., Bioactive Ceramics. Annals of the New York Academy of Sciences, 1988. 523(1): p. 54-71.
[7] Cao, W. and L.L. Hench, Bioactive materials. Ceramics International, 1996. 22(6): p. 493-507.
[8] Hench, L.L., Bioglass and similar materials, in Encyclopedia of materials: Science and technology, K.H.J. Editors-in-Chief: Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 563-568.
[9] Hench, L.L. and J. Wilson, Introduction, in An Introduction to Bioceramics, L.L. Hench, Editor. 2013, Imperial College Press: London. p. 1-26.
[10] Hench, L.L., The story of Bioglass. J Mater Sci Mater Med, 2006. 17(11): p. 967-78.
[11] Li, P., et al., Process of formation of bone-like apatite layer on silica gel. Journal of Materials Science: Materials in Medicine, 1993. 4(2): p. 127-131.
[12] Du, W.-L., et al., Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 2009. 75(3): p. 385-389.
[13] Hench, L.L., Bioceramics. Journal of the American Ceramic Society, 1998. 81(7): p. 1705-1728.
[14] Pereira, M.M., A.E. Clark, and L.L. Hench, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res, 1994. 28(6): p. 693-8.
[15] Li, P., et al., Apatite crystallization from metastable calcium phosphate solution on sol-gel-prepared silica. Journal of Non-Crystalline Solids, 1994. 168(3): p. 281-286.
[16] Hench, L.L. and O.H. Andersson, Bioactive glasses, in An Introduction of bioceramics L.L. Hench, Editor. 1993, World Scientific: London, UK. p. 41-62.
[17] Mačković, M., et al., Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. Journal of Nanoparticle Research, 2012. 14(7): p. 1-22.
[18] Vallet-Regí, M., C. Ragel, and A.J. Salinas, Glasses with medical applications. European Journal of Inorganic Chemistry, 2003. 2003(6): p. 1029-1042.
[19] Vallet-Regí, M., et al., Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Progress in Solid State Chemistry, 2008. 36(3): p. 163-191.
[20] Yan, X., et al., Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities. Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984.
[21] Yan, X.X., et al., Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 2005. 351(40–42): p. 3209-3217.
[22] Zhang, L. and S. Jahanshahi, Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO. Metallurgical and Materials Transactions B, 1998. 29(1): p. 177-186.
[23] Shih, S.-J., Y.-J. Chou, and K. Borisenko, Preparation method: structure–bioactivity correlation in mesoporous bioactive glass. Journal of Nanoparticle Research, 2013. 15(6): p. 1-9.
[24] Shih, C.-C., et al., Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process. Applied Surface Science, 2013. 264(0): p. 105-110.
[25] Chou, Y.-J., Microstructure and bioactivity correlation of one-step synthesized bioactive glass, in Department of Materials Science and Engineering. 2012, National Taiwan University of Science and Technology: Taipei, Taiwan. p. 93.
[26] Panjaitan, L.V.P., Influence of Types and Concentrations of Surfactant for Mesoporous Bioactive Glass, in Department of Materials Science and Engineering. 2013, National Taiwan University of Science and Technology: Taipei, Taiwan. p. 125.
[27] Meliegy, E.E. and R.V. Noort, Glasses and Glass Ceramics for Medical Applications. 2012, New York, Dordrecth Heidelberg London Springer.
[28] Hollinger, J.O., An introduction to biomaterials. 2005: Taylor & Francis.
[29] Cranin, A.N., Biomaterials: An interfacial approach, L. L. Hench and E. C. Ethridge, New York, Academic, 1982, 384 pp. 14 Chapters, Glossary, Bibliography, and Index. Price: $42.00. Journal of Biomedical Materials Research, 1985. 19(5): p. 611-612.
[30] Andersson, Ö.H., K.H. Karlsson, and K. Kangasniemi, Calcium phosphate formation at the surface of bioactive glass in vivo. Journal of Non-Crystalline Solids, 1990. 119(3): p. 290-296.
[31] Vogel, W., et al., Development of machineable bioactive glass ceramics for medical uses. Journal of Non-Crystalline Solids, 1986. 80(1–3): p. 34-51.
[32] Kokubo, T., M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, S. Higashi, Apatite- and Wollastonite Containg Glass-Ceramics for Prosthetic Application Bull. Inst. Chem. Res., Kyoto Univ, 1982. 60(3-4): p. 260–268.
[33] Kokubo, T., et al., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. Journal of Biomedical Materials Research, 1990. 24(6): p. 721-734.
[34] Hench, L.L. and O. Andersson, Bioactive Glasses, in An Introduction to Bioceramics, L.L. Hench, Editor. 2013, Imperial College Press: London. p. 49-69.
[35] Vallet-Regi, M., et al., A New Property of MCM-41:  Drug Delivery System. Chemistry of Materials, 2001. 13(2): p. 308-311.
[36] Ciesla, U. and F. Schüth, Ordered mesoporous materials. Microporous and Mesoporous Materials, 1999. 27(2–3): p. 131-149.
[37] Wu, C. and J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Vol. 2. 2012. 292-306.
[38] C. J. Brinker, Porous inorganic materials, Current Opinion in Solid State and Materials Science. 1996. 1: p. 798-805.
[39] Kruk, M., M. Jaroniec, and A. Sayari, Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements. Langmuir, 1997. 13(23): p. 6267-6273.
[40] Doadrio, A.L., et al., Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. Journal of Controlled Release, 2004. 97(1): p. 125-132.
[41] Yu, H. and Q.-Z. Zhai, Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. Microporous and Mesoporous Materials, 2009. 123(1–3): p. 298-305.
[42] Mellaerts, R., et al., Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material. Microporous and Mesoporous Materials, 2010. 130(1–3): p. 154-161.
[43] Halamová, D., et al., Naproxen drug delivery using periodic mesoporous silica SBA-15. Applied Surface Science, 2010. 256(22): p. 6489-6494.
[44] Sing, K.S.W., D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 1985. 57(4): p. 603-619.
[45] Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359(6397): p. 710-712.
[46] Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): p. 10834-10843.
[47] Zhao, D., et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998. 279(5350): p. 548-552.
[48] Zhao, L., et al., Mesoporous bioactive glasses for controlled drug release. Microporous and Mesoporous Materials, 2008. 109(1–3): p. 210-215.
[49] Wu, C., et al., Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomaterialia, 2011. 7(10): p. 3563-3572.
[50] Li, X., et al., One-pot synthesis of magnetic and mesoporous bioactive glass composites and their sustained drug release property. Acta Materialia, 2008. 56(13): p. 3260-3265.
[51] Johansson, E.M., Controlling the Pore Size and Morphology of Mesoporous Silica, in Nanostructured Materials DivisionDepartment of Physics, Chemistry and Biology (IFM) 2010, Linköping University Linköping, Sweden. p. 67.
[52] Myers, D., Surfaces, interfaces, and colloids: principles and applications. 1999: Wiley-VCH.
[53] Wan, Y., Y. Shi, and D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chemical Communications, 2007(9): p. 897-926.
[54] Kunjappu, J.T., Ink chemistry, 1993. 2013.
[55] Evans, D.F., H. Wennerström, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd Edition. 1999, New York: Wiley-VCH 672.
[56] Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72(0): p. 1525-1568.
[57] Soler-Illia, G.J., et al., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev, 2002. 102(11): p. 4093-138.
[58] Bagshaw, S.A., E. Prouzet, and T.J. Pinnavaia, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995. 269(5228): p. 1242-4.
[59] Schmolka, I.R. 1973.
[60] Corporation, B. 2010, (http://www.basf.com/performancechemical/bcperfpluronic_grid.html).
[61] Hench, L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
[62] Shih, S.-J., Y.-J. Chou, and I.C. Chien, One-step synthesis of bioactive glass by spray pyrolysis. Journal of Nanoparticle Research, 2012. 14(12): p. 1-8.
[63] Eslamian, M. and N. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying. Powder Technology, 2006. 167(3): p. 149-159.
[64] Shih, S.-J., Y.-J. Chou, and L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass. Ceramics International, 2013. 39(8): p. 8773-8779.
[65] Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and Physics, 1999. 59(3): p. 185-198.
[66] Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
[67] Nešić, S. and J. Vodnik, Kinetics of droplet evaporation. Chemical Engineering Science, 1991. 46(2): p. 527-537.
[68] Kraemer, H.F. and H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields. Industrial & Engineering Chemistry, 1955. 47(12): p. 2426-2434.
[69] Okuyama, K., Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science, 1991. 22, Supplement 1(0): p. S7-S10.
[70] Shih, S.-J. and I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology, 2013. 237(0): p. 436-441.
[71] Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499.
[72] Smallman, R.E. and R.J. BiShop, Chapter 5 - The characterization of materials, in Modern Physical Metallurgy and Materials Engineering (Sixth edition), R.E. Smallman and R.J. BiShop, Editors. 1999, Butterworth-Heinemann: Oxford. p. 125-167.
[73] Kostova, I., I.H. Joe, and S.C. Pinzaru, Vibrational spectral characterization of new La(III) and Dy(III) complexes. Journal of Optoelectronics and Biomedical Materials, 2009. 1(2): p. 188 – 199.
[74] Santa, C.F. and L. Sierra, Contribution to the study of the formation mechanism of ordered porous carbons from a soft-template method using the copolymer triblock (PEO140PPO39PEO140) and a phenolic resin. Journal of the Brazilian Chemical Society, 2011. 22: p. 2312-2321.
[75] Muth, O., C. Schellbach, and M. Froba, Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores. Chemical Communications, 2001(19): p. 2032-2033.
[76] Viana, R.B., A.B.F. da Silva, and A.S. Pimentel, Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants. Advances in Physical Chemistry, 2012. 2012: p. 14.
[77] Musi , S., N. Filipovi -Vincekovi , and L. Sekovani Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 2011. 28: p. 89-94.
[78] Bergenon, C.G. and S.H. Risbud, Introduction to Phase Equilibria in Ceramics. The American Ceramic Society, 1984: p. 158.
[79] Chen, X. and S.S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007. 107(7): p. 2891-2959.
[80] Choi, M., et al., Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications, 2003(12): p. 1340-1341.
[81] Monnier, A., et al., Cooperative Formation of Inorganic-Organic Interface in the Synthesis of Silicate Mesoporous. Science, 1993. 261(5126): p. 1299-1303.
[82] Cheng, C.-F., Z. Luan, and J. Klinowski, The Role of Surfactant Micelles in the Synthesis of the Mesoporous Molecular Sieve MCM-41. Langmuir, 1995. 11(7): p. 2815-2819.
[83] Holmes, S.M., et al., In situ FTIR study of the formation of MCM-41. Journal of the Chemical Society, Faraday Transactions, 1998. 94(14): p. 2025-2032.
[84] Boissière, C., et al., A Study of the Assembly Mechanism of the Mesoporous MSU-X Silica Two-Step Synthesis. Chemistry of Materials, 2001. 13(10): p. 3580-3586.
[85] Kruk, M., et al., Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. The Journal of Physical Chemistry B, 2003. 107(10): p. 2205-2213.
[86] Alexandridis, P., U. Olsson, and B. Lindman, A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isothermal System of an Amphiphilic Block Copolymer and Selective Solvents (Water and Oil). Langmuir, 1998. 14(10): p. 2627-2638.
[87] Balas, F., et al., Textural properties of SiO2 center dot CaO center dot P2O5 glasses prepared by the sol-gel method. Journal Of Materials Research, 2001. 16(5): p. 1345 - 1348.
[88] Salinas, A.J., M. Vallet-Regi, and I. Izquierdo-Barba, Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses. Journal of Sol-Gel Science and Technology, 2001. 21(1-2): p. 13-25.
[89] López-Noriega, A., et al., Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration. Chemistry of Materials, 2006. 18(13): p. 3137-3144.
[90] Izquierdo-Barba, I., et al., High-Performance Mesoporous Bioceramics Mimicking Bone Mineralization. Chemistry of Materials, 2008. 20(9): p. 3191-3198.
[91] Vallet-Regi, M., M.M. Garcia, and M. Colilla, Biocompatible and Bioactive Mesoporous Ceramics, in Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering. 2013, CRC Press: Boca Raton. p. 1-55.
[92] Kokubo, T., et al., Handbook of Bioactive Ceramics. 1990, Boca Raton, FL: CRC. 41.
[93] Pérez-Pariente, J., F. Balas, and M. Vallet-Regí, Surface and Chemical Study of SiO2•P2O5•CaO•(MgO) Bioactive Glasses. Chemistry of Materials, 2000. 12(3): p. 750-755.
[94] del Real, R.P., et al., In vivo bone response to porous calcium phosphate cement. J Biomed Mater Res A, 2003. 65(1): p. 30-6.
[95] Vallet-Regi, M., Revisiting ceramics for medical applications. Dalton Trans, 2006(44): p. 5211-20.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE