簡易檢索 / 詳目顯示

研究生: 陳柏瑞
Bo-Rui Chen
論文名稱: 物聯網上基於移動性的SEIRD惡意程式傳播模型之設計
Design of Mobility-Based SEIRD Propagation Model for IoT Malware
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 黃俊穎
Chun-Ying Huang
蕭旭君
Hsu-Chun Hsiao
沈上翔
Shan-Hsiang Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 49
中文關鍵詞: 物聯網物聯網惡意程式惡意程式傳播傳播模型
外文關鍵詞: IoT, IoT malware, Malware propagation, Propagation model
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網(IoT)的快速發展,物聯網裝置與人們的生活已經密不可分,因為物聯網裝置缺乏足夠的安全保護,使得紀錄在物聯網裝置中的個人隱私成為駭客攻擊的目標,除此之外,物聯網裝置能夠利用基礎設施連接(INF)以及裝置對裝置連接(D2D)來傳播訊息,INF基於社群網路為傳播目標,而D2D基於範圍受到移動性的影響,增大了物聯網的傳播能力,因此,要捕捉惡意程式在擁有兩種傳輸模式下的物聯網裝置動態傳播情形是一項很大的挑戰,我們提出Susceptible-Exposed-Infected-Recovered-Death (SEIRD)模型去模擬物聯網上惡意程式的傳播,SEIRD模型考慮了基於人類移動性的雙傳播,透過實驗證明了SEIRD模型良好捕捉惡意程式在不同狀況下的傳播情形,我們也提供了傳輸閥值作為判斷指標,及早知道當下的安全策略是否合適。


    With the rapid development of the Internet of Things (IoT), IoT devices are insepa-rable from human’s life. Because the lack of security on the IoT devices, the personalprivacy we recorded on IoT devices has been targeted by the hackers. In addition tothat, IoT devices can utilize infrastructure (INF) link and device-to-device (D2D)link to propagate information. The INF link bases on the social network, and theD2D link bases on device’s mobility which amplifies the transmission capability.Those two propagation method problems with IoT device’s vulnerability make achallenge about capturing the dynamic malware propagation on IoT network. Weproposed Susceptible-Exposed-Infected-Recovered-Death (SEIRD) model to modelthe spread of IoT malware. SEIRD model considers two propagation method withhuman mobilty. We prove that our SEIRD model could well capture the spreadof IoT malware in different situations, and provide transmission threshold to learnearly whether the security measures are appropriate or not.

    Chinese Abstract 1 Abstract 2 Table of Contents 3 List of Tables 5 List of Illustrations 6 1 Introduction 8 2 Related Work 12 2.0.1 IoT malware 12 2.0.2 Propagation model 13 3 System model 17 3.1 Human mobility model 17 3.2 SEIRD model 18 3.2.1 For the D2D propagation 22 3.2.2 For the INF propagation 23 4 Mathematical derivation 25 4.1 Equilibrium point 25 4.2 Propagation threshold 26 5 Experiment 29 5.1 Parameters discussion 29 5.2 Equilibrium point and Threshold 36 5.3 Comparing models and Implementing dataset 40 6 Conclusion 41 References 42

    [1] S.-M. Cheng, W.-C. Ao, P.-Y. Chen, and K.-C. Chen, “On modeling malware
    propagation in generalized social networks,” IEEE Commun. Lett., vol. 15,
    no. 1, pp. 25–27, Nov. 2011.
    [2] A. A. Kindi, D. A. Abri, A. A. Maashri, and F. Bait-Shiginah, “Analysis of
    malware propagation behavior in social internet of things,” Int. J. Commun.
    Syst., vol. 32, no. 15, p. e4102, Jul. 2019.
    [3] B. Liu, W. Zhou, L. Gao, H. Zhou, T. H. Luan, and S. Wen, “Malware propagations
    in wireless ad hoc networks,” IEEE Trans. Depend. Sec. Comput., no. 1,
    pp. 1–1, Dec. 2016.
    [4] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and
    open challenges,” Elsevier FUTURE GENER COMP SY, vol. 82, pp. 395–411,
    Jan. 2018.
    [5] A. Dorri, S. S. Kanhere, RajaJurdak, and P. Gauravaram, “Blockchain for IoT
    security and privacy: The case study of a smart home,” in Proc. IEEE PerCom
    2017, May 2017, pp. 618–623.
    [6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai
    and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, Jul. 2017.
    [7] G. Meng, M. P. Y. Xue, Y. Liu, and J. Zhang, “Securing android App markets
    via modeling and predicting malware spread between markets,” IEEE Trans.
    Inf. Forensics Security, vol. 14, no. 7, pp. 1944–1959, Dec. 2018.
    [8] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
    evolution,” in Proc. IEEE S&P 2012, Jul. 2012, pp. 95–109.
    [9] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Optimal control of epidemic information
    dissemination over networks,” IEEE transactions on cybernetics, vol. 44,
    no. 12, pp. 2316–2328, Mar. 2014.
    [10] T. Wang, C. Xia, S. Wen, H. Xue, Y. Xiang, and S. Tu, “Sadi: A novel model to
    study the propagation of social worms in hierarchical networks,” IEEE Trans.
    Depend. Sec. Comput., vol. 16, no. 1, pp. 142–155, Nov. 2017.
    [11] X. Chen, R. Wang, M. Tang, S. Cai, H. E. Stanley, and L. A. Braunstein,
    “Suppressing epidemic spreading in multiplex networks with social-support,”
    IOP NEW J PHYS, vol. 20, no. 1, p. 013007, Jan. 2018.
    [12] Z. Wang, C. Xia, Z. Chen, and G. Chen, “Epidemic propagation with positive
    and negative preventive information in multiplex networks,” IEEE Trans
    Cybern, Jan. 2020.
    [13] X. Chen, W. Wang, S. Cai, H. E. Stanley, and L. A. Braunstein, “Optimal
    resource diffusion for suppressing disease spreading in multiplex networks,” IOP
    J. Stat. Mech.: Theory Exp, vol. 2018, no. 5, p. 053501, Jan. 2018.
    [14] D. Kiouach and Y. Sabbar, “Threshold analysis of the stochastic Hepatitis B
    epidemic model with successful vaccination and levy jumps,” in Proc. WCCS
    2019, Apr. 2019, pp. 1–6.
    [15] R. Goel and R. Sharma, “Mobility based SIR model for pandemics–with case
    study of COVID-19,” arXiv preprint arXiv:2004.13015, Apr. 2020.
    [16] C. Granell and P. J. Mucha, “Epidemic spreading in localized environments
    with recurrent mobility patterns,” Physical Review E, vol. 97, no. 5, p. 052302,
    May 2018.
    [17] M. J. Farooq and Q. Zhu, “Modeling, analysis, and mitigation of dynamic botnet
    formation in wireless IoT networks,” IEEE Trans. Inf. Forensics Security,
    vol. 14, no. 9, pp. 2412–2426, Feb. 2019.
    [18] N. Kawabata, Y. Yamasaki, and H. Ohsaki, “Modeling restrained epidemic
    routing on complex networks,” in Proc. IEEE COMPSAC 2019, vol. 1, Jul.
    2019, pp. 285–290.
    [19] S. Shen, H. Zhou, S. Feng, J. Liu, and Q. Cao, “SNIRD: Disclosing rules of
    malware spread in heterogeneous wireless sensor networks,” IEEE Access, vol. 7,
    pp. 92 881–92 892, Jul. 2019.
    [20] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic, “Malware propagation
    in large-scale networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp.
    170–179, Jan. 2015.
    [21] Y. Chen, Y. Mao, L. Cui, S. Leng, Y. Wei, and X. sha Chen, “A two layer model
    of malware propagation in a search engine context,” in Proc. IEEE INFOCOM
    WKSHPS 2018, Apr. 2018, pp. 21–26.
    [22] X. Wang, B. Song, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng, “Groupbased
    susceptible-infectious-susceptible model in large-scale directed networks,”
    Hindawi SECUR COMMUN NETW, vol. 2019, Jan. 2019.
    [23] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile Internet of Things:
    Can UAVs provide an energy-efficient mobile architecture?” in Proc. IEEE
    GLOBECOM 2016), Dec. 2016, pp. 1–6.
    [24] Y. H. Kim, S. Peeta, and X. He, “An analytical model to characterize the
    spatiotemporal propagation of information under vehicle-to-vehicle communications,”
    IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 3–12, Jan. 2016.
    [25] G. Xie, Y. Chen, H. Zhang, and Y. Liu, “MBIC: a novel influence propagation
    model for membership-based influence maximization in social networks,” IEEE
    Access, vol. 7, pp. 75 696–75 707, Jun. 2019.
    [26] Y.-Q. Zhang, X. Li, and A. V. Vasilakos, “Spectral analysis of epidemic thresholds
    of temporal networks,” IEEE Trans. Cybern., Sep. 2017.
    [27] B. Song, X. Wang, W. Ni, Y. Song, R. P. Liu, G.-P. Jiang, and Y. J. Guo,
    “Reliability analysis of large-scale adaptive weighted networks,” IEEE Trans.
    Inf. Forensics Security, Jul. 2019.
    [28] Y. Wei, Y. Tao, N. Yang, and S. Leng, “On modeling malware propagation in
    interest-based overlapping communities,” IEEE Access, Aug. 2019.
    [29] D. Zhao, L. Wang, Z. Wang, and G. Xiao, “Virus propagation and patch distribution
    in multiplex networks: Modeling, analysis, and optimal allocation,”
    IEEE Trans. Inf. Forensics Security, vol. 14, no. 7, pp. 1755–1767, Dec. 2018.
    [30] L. Yang, X. Yang, and Y. Y. Tang, “A bi-virus competing spreading model
    with generic infection rates,” IEEE TNSE, vol. 5, no. 1, pp. 2–13, Jul. 2018.
    [31] W. Liu and S. Zhong, “Web malware spread modelling and optimal control
    strategies,” Nature Sci. Rep, vol. 7, p. 42308, Feb. 2017.
    [32] D. Acarali, M. Rajarajan, and N. Komninos, “Modeling botnet propagation in
    networks with layered defences,” in Proc. IEEE ISNCC 2018, Nov. 2018, pp.
    1–6.
    [33] H. Xia, L. Li, X. Cheng, X. Cheng, and T. Qiu, “Modeling and analysis botnet
    propagation in social Internet of Things,” IEEE Internet Things J., Mar. 2020.
    [34] V. Taynitskiy, E. Gubar, and Q. Zhu, “Optimal impulse control of bi-virus SIR
    epidemics with application to heterogeneous internet of things,” in Proc. IEEE
    CNSA 2017, Jul. 2017, pp. 1–4.
    [35] J. H. Guillén, A. M. del Rey, and R. Casado-Vara, “Security countermeasures
    of a SCIRAS model for advanced malware propagation,” IEEE Access, vol. 7,
    pp. 135 472–135 478, Sep. 2019.
    [36] S. Shen, H. Zhou, S. Feng, J. Liu, H. Zhang, and Q. Cao, “An epidemiologybased
    model for disclosing dynamics of malware propagation in heterogeneous
    and mobile WSNs,” IEEE Access, vol. 8, pp. 43 876–43 887, Mar. 2020.
    [37] L. Zhang, L. Song, and J. Xu, “Preventing malware propagation in D2D offloading
    networks with strategic mobile users,” in Proc. IEEE GLOBECOM
    2019, Dec. 2019, pp. 1–6.
    [38] W. Zhou and B. Yu, “A cloud-assisted malware detection and suppression
    framework for wireless multimedia system in IoT based on dynamic differential
    game,” IEEE CHINA COMMUN, vol. 15, no. 2, pp. 209–223, Feb. 2018.
    [39] J.-L. Li and S.-M. Cheng, “On modeling IoT malware propagation considering
    size distributions,” Master Thesis, Jul. 2017.
    [40] D. Acarali, M. Rajarajan, N. Komninos, and B. Zarpelão, “Modelling the spread
    of botnet malware in IoT-Based wireless sensor networks,” Hindawi SECUR
    COMMUN NETW, Feb. 2019.
    [41] R. He, B. Ai, G. L. Stüber, and Z. Zhong, “Mobility model-based non-stationary
    mobile-to-mobile channel modeling,” IEEE Trans. Wireless Commun., vol. 17,
    no. 7, pp. 4388–4400, Apr. 2018.
    [42] P. V. den Driessche and J. Watmough, “Reproduction numbers and subthreshold
    endemic equilibria for compartmental models of disease transmission,”
    Math Biosci, vol. 180, no. 1-2, pp. 29–48, Nov. 2002.
    [43] A. Kernen, J. Ott, and T. Krkkinen, “The ONE simulator for DTN protocol
    evaluation,” in Proc ICST 2009, New York, NY, USA, 2009.
    [44] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
    collection,” http://snap.stanford.edu/data, Jun. 2014.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE