簡易檢索 / 詳目顯示

研究生: 張珈瑋
Chia-wei Chang
論文名稱: 整合24GHz壓控振盪器與8GHz注入鎖定除頻器之設計
Design of Integrated 24GHz Voltage Controlled Oscillator and 8GHz Injection Locked Frequency Divider
指導教授: 黃進芳
Jhin-Fang Huang
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
C.W. Hsue
陳凰美
Hwan-Mei Chen
陳國龍
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 111
中文關鍵詞: 電壓控制振盪器注入鎖定除頻器3D電感
外文關鍵詞: VCO, ILFD, 3D Inductor
相關次數: 點閱:380下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓控振盪器與除頻器是頻率合成器電路中,主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作、寬的操作頻寬及低功率消耗。
    本論文將描述如何設計金氧半壓控振盪器與直接注入鎖定除頻器,第一部分我們提出了一個寬鎖頻範圍的3D電感直接注入除3電路,此電路使用台積電所提供之零點一八微米互補式金氧半製程所製造,此除頻器使用一組nMOS交錯耦合的LC振盪器加上兩個串聯注入的MOSFETs,其中LC共振器電感為自製的3D電感,達到了減小面積及增加鎖頻範圍之功效。
    第二部分我們提出了一個整合壓控振盪器與除頻器的電路,除頻器為一個使用並聯式注入的8GHz直接注入鎖定除三電路,再搭配一個24GHz的壓控振盪器整合於同一晶片,此電路使用台積電所提供之零點一八微米互補式金氧半製程所製造,除頻器可以鎖定除頻壓控振盪器的輸出訊號,並且鎖定除頻後比未鎖定除頻前有更低的相位雜訊。


    The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
    This thesis studies the design of CMOS Voltage-Controlled Oscillator and injection-locked frequency divider. The first part proposes a wide-locking range divide-by-3 frequency divider employing 3D helical inductors fabricated in the 0.18-μm 1P6M CMOS technology. The divider consists of an nMOS cross-coupled LC oscillator and two injection MOSFETs in series with the cross-coupled NMOSFETs, and the LC resonator is composed of two 3D helical inductors and varactors. The aim of using 3D inductor is to reduce chip size.
    The second part of this thesis proposes an integrated VCO-divider circuit, the divide-by-3 injection locked frequency divider consists of a 8GHz nMOS-core VCO with two parallel injection MOSFETs and the VCO is a 24GHz double cross-coupled np-core CMOS VCO. The circuit is implemented in a standard 0.18-μm CMOS process. The ILFD can lock to the VCO and outputs a lower phase noise source than the free running ILFD.

    Contents 中文摘要 1 ABSTRACT 3 誌謝 4 CONTENTS 5 LIST OF FIGURES 7 LIST OF TABLES 10 CHAPTER 1 INTRODUCTION 11 1.1 BACKGROUND 11 1.2 THESIS ORGANIZATION 14 CHAPTER 2 OVERVIEWS OF VOLTAGE-CONTROLLED OSCILLATORS AND INJECTION-LOCKED FREQUENCY DIVIDER 15 2.1 THE OSCILLATOR 15 2.1.1 Negative Resistance (NR) 15 2.1.2 Positive Feedback (PFB) 18 2.2 ALL TYPES OF OSCILLATORS 20 2.2.1 Ring Oscillator 21 2.2.2 LC-Tank Oscillator 24 2.3 VOLTAGE-CONTROLLED OSCILLATOR 28 2.4 THE PARAMETERS OF VCOS 29 2.4.1 Center Frequency 29 2.4.2 Tuning Range 29 2.4.3 Tuning Linearity 30 2.4.4 Output Amplitude 31 2.4.5 Power Dissipation 31 2.4.6 Supply and Common-Mode Rejection 32 2.4.7 Output Signal Purity 32 2.5 PHASE NOISE 32 2.5.1 Definition of Phase Noise 33 2.5.2 Existing Models of Phase Noise 35 2.5.2.1 Time-invariant phase noise model 35 2.5.3 Noise Sources 37 2.5.4 Phase Noise in Wireless Communication 42 2.5.5 Previous Models of Phase Noise 44 2.6 ON-CHIP INDUCTOR RESEARCH 46 2.7 VARACTOR 56 2.7.1 P-N Junction Varactor 56 2.7.2 MOS Varactor 57 2.8 RESISTORS 63 2.9 INJECTION LOCKING 64 CHAPTER 3 DIVIDE-BY-3 LC INJECTION LOCKED FREQUENCY DIVIDER IMPLEMENTED WITH 3D INDUCTORS 70 3-1. INTRODUCTION 70 3-2. CIRCUIT DESIGN 72 3-3. MEASUREMENT RESULTS 82 3-4. CONCLUSION 91 CHAPTER 4 INTEGRATED 24GHZ LC VCO AND 8GHZ DIVIDE-BY-3 FREQUENCY DIVIDER 92 4-1. INTRODUCTION 92 4-2. DESIGN OF VCO AND ILFD CIRCUITS 94 4-3. MEASUREMENT RESULTS 100 4-4. CONCLUSION 105 CHAPTER 5 CONCLUSION 106 REFERENCES 108

    [01] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [02] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [03] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [04] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [05] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits,vol. 32, pp. 736-744, May 1997.
    [06] H.R. Rategh, H. Samavati, T.H. Lee, “A 5 GHz, 1 mW CMOS voltage controlled differential injection locked frequency divider,” Custom Integrated Circuits Conference, pp. 517-520 May 1999
    [07] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [08] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [09] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [10] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380–1385, 1973.
    [11] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
    [12] H. Wu and A. Hajimiri, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement and slides,” Solid-State Circuits Conf., 2001.
    [13] H. R. Rategh, D. Samavati and T. H. Lee, “A CMOS frequency synthesizer with an injected-locked frequency divider for a 5-GHz wireless LAN receiver,” VLSI Circuits, 1999.
    [14] H.R Rategh and T.H Lee, “Superharmonic injection locked frequency dividers,” IEEE J. Solid-State Conf., vol. 34, pp. 813-821, 1999.
    [15] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170-1174, July 2004.
    [16] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang,” A wide locking range and low voltage CMOS direct injection-locked frequency divider ,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [17] H. Hashemi, Integrated Concurrent Multiband Radios and Multiple Antenna Systems, PhD dissertation, California Institute of Technology, 2003.
    [18] H. Wu and L. Zhang, "A 16-to-18GHz 0.18um epi-CMOS divide-by-3 injection-locked frequency divider," in 2006 ISSCC, pp.602 – 603.
    [19] Jeong, S. Kim, W. Choi, H. Noh, K. Lee, K.-S. Seo, and Y. Kwon, "W-band divide-by-3 frequency divider using 0.1 μm InAlAs/InGaAs metamorphic HEMT technology," Electronics Letts., pp. 1005 – 1006, Sep.2005.
    [20] S.-L. Jang, W. Yeh and C.-F. Lee, ” A low power CMOS divide-by-3 LC-tank injection locked frequency divider ,” Microwave and Optical Technology Lett. Vol. 50, no. 1, pp.259-262, Jan. 2008.
    [21] J. Gil, S.-S. Song, H. Lee and H. Shin, “A -119.2 dBc/Hz at 1 MHz, 1.5 mW, fully integrated, 2.5-GHz, CMOS VCO using helical inductors,” IEEE Microwave Wireless Compon. Lett., vol. 13, no. 11, pp. 457–459, Nov. 2003.
    [22] C.S. Li, W. Q. Wang “A Full Integrated 2.4GHz ISM Band 0.25μm CMOS VCO with 11.6% Tuning Range” Microwave and Millimeter Wave Technology, 2004. ICMMT 4th International Conference on, Proceedings 18-21 pp.598 – 601, Aug. 2004.
    [23] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation” IEEE J. Solid-State Circuits, vol. 39, pp. 1425-1433, Sept. 2004.
    [24] S.-L. Jang, C.-F. Lee, and W.-H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., Feb. 2008.
    [25] C.-F. Lee and S.-L. Jang, ” A novel divide-by-3 Hartley injection-locked frequency divider,” to appear in Microwave and Optical Technology Lett., 2008.
    [26] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [27] D. Ozis, N.M. Neihart, and D.J. Allstot, "Differential VCO and passive frequency doubler in 0.18μm CMOS for 24GHz applications, " IEEE Radio Frequency IC Sym., June 2006, pp. 45-48.
    [28] Y.M. Lee; J.S. Lee; R.A. Ju ; K.W. Kim; S.D. Yu “A 1.8-V frequency synthesizer for WCDMA in 0.18-/spl mu/m CMOS process” Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on Vol 3, 4-7 pp. 613-616 Aug. 2000.
    [29] S.-L. Jang, C.-F. Lee, and W.-H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp. 142-144, Feb. 2007.
    [30] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits, Dor drecht: Kluwer, 1998.
    [31] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
    [32] C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 881 -887, Mar. 2005.
    [33] S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microwave Wireless Compon. Lett., vol. 17, no.2, pp. 145-147, Feb. 2007.
    [34] M. Soyuer, J. N. Burghartz, H. A. Ainspan, K. A. Jenkins, P. Xiao, A. R. Shahani, M. S. Dolan, and D. L. Harame, “An 11-GHz 3-V SiGe voltage controlled oscillator with integrated resonator,” IEEE J. Solid-State Circuits,, vol. 32, no. 9, pp. 1451–1454, Sep. 1997.
    [35] S. Shekhar, S. Aniruddhan and D.J. Allstot, “A fully-differential CMOS Clapp VCO for IEEE 802.11a applications,” in Proc. Int. Symposium on Circuits and Systems, 2006, pp. 3241-3244.
    [36] G. De Astis, D. Cordeau, J.-M. Paillot, L. Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp.2087-2091, Oct. 2005.
    [37] M.-D. Tsai, Y.-H. Cho, and H. Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 15, no 5, pp. 327-329, May 2005.
    [38] C. M. Hung, B. Floyd, and K. K. O, “Fully integrated 5.35-GHz CMOS VCO and a prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 17–22, Jan. 2001.
    [39] Jerng, C. G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 360-369, Feb. 2005.
    [40] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J. Jhao, “5-GHz Low Power Current Reused Balanced CMOS Differential Armstrong VCOs,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 2, pp. 139-141, Feb. 2007.
    [41] B. Min and H. Jeong, “5-GHz CMOS LC VCOs with wide tuning ranges,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 5, pp. 336-338, May 2005.
    [42] K. Kwok, and H. C. Luong, “A 0.35-V 1.46-mW low-phase-noise oscillator with transformer feedback in standard 0.18-um CMOS process,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 551-554, Sept. 2003.
    [44] A. Tedesco, A. Bonfanti, L. Panseri, and A. Lacaita, “A 11-15GHz CMOS 2 Frequency divider for broad-band I/Q generation,” IEEE Microwave Wireless Component Letter, vol. 15, pp. 724-726, Nov. 2005.
    [45] L. H. Lu, J. C. Chien, “A wide-band CMOS injection-locked ring oscillator,” IEEE Microwave Wireless Component Letter, vol. 15, pp. 676-678, Oct. 2005.
    [46] J. Van der Tang , P. van de Ven, D. Kasperkovsky, and A. van Roermund, “Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator,” IEEE J. Solid State Circuits, vol. 37, pp. 657-661, May 2002.
    [47] B. Razavi, “RF transmitter architectures and circuits,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 197-204, May 1999.
    [48] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 873-887, June 2001.

    QR CODE