簡易檢索 / 詳目顯示

研究生: 謝欣哲
Hin-Che Hsieh
論文名稱: 可視化微機電光譜晶片模組及其影像處理之研究與開發
Research and Development of Visualization System for MEMS Spectrochip Module and Image Processing
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 李敏凡
Min-Fan Lee
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 波長校正波峰偵測雙光源校正可視化影像處理
外文關鍵詞: Wavelength Calibration, Peak Detection, Dual Light Source Wavelength Calibration, Visualization, Image Processing
相關次數: 點閱:367下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在微機電光譜晶片的基礎上進一步的建立可視化系統,輔助光譜晶片模
組的生產,以提高生產效率及光譜晶片模組的品質。在可視化系統上加入光譜儀生
產時需要的波長校正(Wavelength Calibration,內文中簡稱WC) 程序,整合後進行自
動化與資訊化系統的開發,在實現自動化、標準化開發的同時對光譜晶片模組的生
產進行管理。
這篇研究將會對可視化系統的每個部件組成進行說明,並詳細的介紹波長校正
流程及輔助光譜晶片的程序,將所有獲得的相關數據分析後進行方程式擬合,最後
用白光LED 進行驗證及比對,確認可視化系統輔助光譜晶片生產的結果。
可視化系統未來可將不同解析能力的光譜晶片進行分類比對,這些獲取的數據
對改善光譜晶片製造有更多的幫助。未來的研究中,加入更多的製程參數,讓系統
有更多有效的輔助生產程式,是可視化系統未來進一步研究的方向。


In the research, a visualization system is further established base on the MEMS Spectrochip to assist the production of the module, improves the production efficiency and the quality of the Spectrochip. The development of automation and information systems after adding wavelength calibration program to the visualization system. Manage the production of Spectrochip modules while achieving automation and standardization.
This study will describe each component of the visualization system and introduce the
wavelength calibration process and the procedures of the auxiliary Spectrochip in detail. All the relevant data obtained are then analyzed and fitted to the equation. Finally, the white light LED is used for verification and comparison to confirm the results of the visualization system for Spectrochip.
In the future, the visualization system can classify and compare Spectrochip with different resolutions, The data could improve Spectrochip process. In future research, adding more process parameters to allow the system to have more effective auxiliary production programs is the direction of further research on the visualization system in the future.

致謝 I 摘要 II ABSTRACT III 目錄 IV 符號列表 IX 第一章緒論 1 1.1 前言 1 1.2 文獻探討 2 1.3 研究動機 3 1.4 論文架構 4 第二章光譜晶片架構與波長校正 5 2.1 二維曲面光柵 5 2.2 波長校正 6 2.2.1 光源的選擇 7 2.2.2 數據收集與整合 7 2.2.3 波長校正計算 8 2.2.4 最佳化 9 2.3 光譜解析能力 9 2.3.1 瑞利準則 9 2.3.2 半高全寬 10 2.3.3 波峰擬合函數 11 2.3.4 抗噪濾波 11 第三章可視化系統架構及軟體流程 14 3.1 影像傳輸系統架構 14 3.1.1 光譜晶片模組 14 3.1.2 影像訊號處理器 16 3.1.3 UVC 介面 20 3.2 自動化波長校正的軟體程序 21 3.2.1 ROI Scan 22 3.2.2 Auto scaling 24 3.2.3 波峰位置偵測 27 3.2.3.1 汞氬燈波峰位置 28 3.2.3.2 單雷射波峰位置偵測 34 3.2.4 結合校正 37 3.3 白光LED 光譜分析與擬合 40 第四章系統驗證 44 4.1 系統流程測試 44 4.2 測試板晶片量測與擬合 48 4.3 擬合白光光譜比對 59 第五章結論 63 參考文獻 64

[1] S. Grabarnik, A. Emadi, H. Wu, G. d. Graaf, and R. F. Wolffenbuttel, “Microspectrometer with a concave grating fabricated in a mems technology,” Procedia Chemistry,vol. 1, no. 1, pp. 401–404, 2009.
[2] C. H. Ko and M. F. R. Lee, “Design and fabrication of a microspectrometer based on silicon concave micrograting,” Optical Engineering, vol. 50, no. 8, pp. 084–401, 2011.
[3] R. Mabrouki, B. Khaddoumi, and M. Sayadi, “R peak detection in electrocardiogram
signal based on a combination between empirical mode decomposition and hilbert transform,” in 2014 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2014, pp. 183–187.
[4] S. K. Mukhopadhyay, M. Mitra, and S. Mitra, “Ecg signal processing: Lossless compression,transmission via gsm network and feature extraction using hilbert transform,” 2013 IEEE Point-of-Care Healthcare Technologies (PHT), pp. 85–88, 2013.
[5] X. Yu, Y. Sun, A. Fang, W. Qi, and C. Liu, “Laboratory spectral calibration and radiometric calibration of hyper-spectral imaging spectrometer,” in The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014), 2014, pp. 871–875.
[6] W. H. Chiu, “Calibration program development of microspectrometer - applied to measure protein concentration,” Master’s thesis, 2018.
[7] C. Bi, L. Li, D. Wang, Z. Wang, and W. Cao, “Research on curve fitting of transmission T of 2D photonic crystal microcavity,” in 2008 International Workshop on Metamaterials, 2008, pp. 166–168.
[8] C. Li and Y. Li, “Fitting of brillouin spectrum based on labview,” in 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing,
2009, pp. 1–4.
[9] L. P. Chang, “Development and application of an algorithm for automated peak detection and baseline correction for line spectrum.” M.S. thesis, Dept. Automation and Control., Taiwan Tech Univ., Taipei, Taiwan, 2018, pp. 20–24.
[10] C. H. Ko, C. Hong, and W. H. Chiu, “Mems based spectrochip for healthcare, food
safety and blockchain applications,” Next-Generation Spectroscopic Technologies XII,
vol. 10983, pp. 1–4, 2019.
[11] Y. C. Sun, C. Huang, G. Xia, S. Q. Jin, and H. B. Lu, “Accurate wavelength calibration method for compact ccd spectrometer,” Journal of the Optical Society of America A, vol. 34, pp. 497–498, 2019.
[12] F. Guzmán, P. Meza, and E. Vera, “Compressive temporal imaging using a rolling shutter camera array,” Optics Express, vol. 29, no. 9, pp. 12 787–12 800, 2021.
[13] D. Coulter and B. Golden, Usb video class driver overview, 2017.
[14] Z. An and H. Liu, “Achievement of dynamic link library insertion under .net,” in 2010 International Symposium on Intelligence Information Processing and Trusted Computing, 2010, pp. 403–405.
[15] H. Li, “A novel dual-slope based electrocardiogram peak detection method for wearable devices,” in 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), 2020, pp. 327–331.
[16] T. Sasaki, T. Sakamoto, and M. Otsuka, “Absorption peak shape of the lowest vibrational mode of β-form d-mannitol observed by high frequency accuracy terahertz spectroscopy,” in 2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2020, pp. 1–2.
[17] M. N. Vesperinas, Elements of the Theory of Diffraction. 2nd ed., London, UK: World Scientific Publishing Company, 2006.

QR CODE