簡易檢索 / 詳目顯示

研究生: 吳硏睿
Yen-Jui Wu
論文名稱: 壓控振盪器及除二注入鎖定除頻器之研究與製作
Study and Implementation of VCOs and Divide-by-2 ILFDs
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
陳凰美
Hwan-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 119
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: voltage controled oscilator
相關次數: 點閱:257下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目標是在研究與實現頻率合成器裡的兩個主要電路,即壓控振盪器和注入鎖定除頻器。本論文裡實現了三個壓控振盪器和兩個注入鎖定除頻器。
    在第一個壓控振盪器裡,我們使用對稱型的三維(3-D)電感來實現中間抽頭(tapped)電感架構,這個中間抽頭電感是用來取代諧振腔裡的傳統電感的。此外,我們還使用了尾端電流塑形(tail current-shaping)的技術來提升壓控振盪器的特性。此壓控振盪器的輸出頻率是4.79GHz、在距離1MHz地方的相位雜訊是-102.57dBc/Hz、計算出來的FOM是-175.34,而可以調整的頻率是320MHz。我們使用互補式的考畢子(Colpitts)架構和雜訊位移(noise-shifting)技術來實現了第二個壓控振盪器。此壓控振盪器的輸出頻率是3.64GHz、在距離1MHz地方的相位雜訊是-120.57dBc/Hz、計算出來的FOM是-185.89,而可以調整的頻率是490MHz。第三個壓控振盪器和第二個的架構是一樣的,只是使用了不同的製程來實現,此壓控振盪器的輸出頻率是2.44GHz、在距離1MHz地方的相位雜訊是-105.65dBc/Hz、計算出來的FOM是-163.4,而可以調整的頻率是380MHz。
    在第一個注入鎖定除頻器裡面,諧振腔裡的傳統電感被用螺旋形(helical)電感實現的中間抽頭(tapped)電感架構所取代。可鎖定的範圍是從3.84GHz到5.15GHz,這是在輸入信號是-3dBm的情況下所測量出來的。而第二個注入鎖定除頻器的可鎖定的範圍是從5.5GHz到7.9GHz,這也是在輸入信號是-3dBm的情況下所測量出來的。


    The object of this thesis is to study and implement the VCO and ILFD, which are the main components in the synthesizer. We implement three VCOs and two ILFDs in this thesis.
    In VCO1, we use the symmetric 3-D inductor to implement the tapped inductor in the LC tank. We also use tail current-shaping technique to improve performance. The output frequency is 4.79GHz, phase noise at 1MHz frequency offset is -102.57dBc/Hz, FOM is -175.34 and tuning range is 320MHz. We use the complementary Colpitts structure and the noise-shifting technique to implement the VCO2. The output frequency is 3.64GHz, phase noise at 1MHz frequency offset is -120.57, FOM is -185.89 and tuning range is 490MHz. The structure of VCO3 is the same as VCO2 but with different process technology. In VCO3, the output frequency is 2.44GHz, phase noise at 1MHz frequency offset is -105.65, FOM is -163.4 and tuning range is 380MHz.
    In ILFD1, the inductor of LC tank is the tapped inductor implemented by helical inductor. The measured locking range is 3.84~5.15GHz with -3dBm of injection power. The measured locking range of ILFD2 is 5.5~7.9GHz with -3dBm of injection power.

    Chapter 1 Introduction…………………………………………1 1.1 Transceiver Architecture…………………………………1 1.2 Frequency Synthesizer Architecture……………………3 1.3 Thesis Overview……………………………………………4 Chapter 2 Theory of VCO………………………………………6 2.1 Introduction…………………………………………………6 2.2 Ideal and Practical Oscillator…………………………7 2.3 Classification of Oscillators……………………………9 2.4 Basic Concepts of LC Oscillators………………………13 2.4.1 Feedback Model……………………………………………13 2.4.2 One-Port Model……………………………………………17 2.5 Basic LC Oscillator Topology……………………………20 2.5.1 Cross-Coupled Oscillator………………………………20 2.5.1.1 Feedback Model…………………………………………20 2.5.1.2 One-Port Model…………………………………………24 2.5.2 Colpitts Oscillator……………………………………27 2.5.2.1 Feedback Model…………………………………………27 2.5.2.2 One-Port Model…………………………………………31 2.6 Tuning Characteristic of Oscillator……………………33 2.7 Tail Current Source…………………………………………35 2.8 Buffer…………………………………………………………37 2.9 Specifications of VCOs……………………………………39 2.9.1 Center Frequency…………………………………………39 2.9.2 Output Amplitude…………………………………………39 2.9.3 Tuning Characteristics…………………………………40 2.9.4 Power Dissipation…………………………………………42 2.9.5 Phase noise…………………………………………………42 2.9.5.1 Phase Noise Definition………………………………42 2.9.5.2 Effect of Phase Noise in RF Communications……44 2.9.5.3 Phase Noise Model………………………………………46 2.9.5.3.1 LTI Phase Noise Model………………………………46 2.9.5.3.2 LTV Phase Noise Model………………………………47 2.9.6 Harmonics……………………………………………………49 2.9.7 Technology…………………………………………………50 2.9.8 Waveform……………………………………………………50 Chapter 3 Implementation of VCOs……………………………52 3.1 Implementation of VCO1……………………………………52 3.1.1 Symmetric 3-D Inductor…………………………………52 3.1.1.1 Self Resonant Frequency……………………………53 3.1.1.2 Quality Factor…………………………………………55 3.1.2 Tapped Inductor…………………………………………57 3.1.3 Tail Current-Shaping Technique………………………59 3.1.3.1 Reduction of the RMS Value of the ISF…………59 3.1.3.2 DC to RF Conversion…………………………………62 3.1.3.3 Filtering Noise………………………………………63 3.1.3.4 Reduction of Phase Noise……………………………64 3.1.4 Circuit Description and Implementation……………64 3.1.5 Measurement Results……………………………………68 3.2 Implementation of VCO2……………………………………71 3.2.1 Complementary Copitts Structure……………………71 3.2.1.1 Conventional Colpitts Structure…………………71 3.2.1.2 Complementary Copitts Structure…………………71 3.2.1.2.1 Topology and One-Port Analysis…………………71 3.2.1.2.2 Phase Noise…………………………………………73 3.2.2 Noise-Shifting Technique………………………………74 3.2.3 Circuit Description and Implementation……………75 3.2.4 Measurement Results……………………………………76 3.3 Implementation of VCO3……………………………………79 3.3.1 Circuit Description and Implementation……………79 3.3.2 Measurement Results……………………………………81 Chapter 4 Theory of ILFD………………………………………84 4.1 Introduction…………………………………………………84 4.2 Classification of Analog Frequency Dividers………85 4.3 Basic Concept for ILFD……………………………………86 4.3.1 Injection Locking………………………………………86 4.3.2 Model of ILFD……………………………………………87 4.3.2.1 General Case……………………………………………87 4.3.2.2 Special Case……………………………………………89 4.3.3 Noise in ILOs……………………………………………90 4.4 Classification of ILFDs…………………………………92 4.5 Basic Topology of Divide-by-2 ILFD……………………94 Chapter 5 Implementation of Divide-by-2 ILFDs…………97 5.1 Implementation of ILFD1…………………………………97 5.1.1 Injection position………………………………………97 5.1.2 Helical Inductor…………………………………………99 5.1.3 Circuit Description and Implementation……………102 5.1.4 Measurement Results……………………………………104 5.2 Implementation of ILFD2…………………………………107 5.2.1 Circuit Description and Implementation……………107 5.2.2 Measurement Results………………………………………110 Chapter 6 Conclusion……………………………………………113 6.1 Comparison of VCOs…………………………………………113 6.2 Comparison of ILFDs…………………………………………113 References…………………………………………………………116

    [1] J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design Circuit Design for RF Transceivers. Artech House Publishers, 2003
    [2] A. V. Raisanen and A. Lehto, Radio Engineering for Wireless Communication and Sensor Applications. Artech House Publishers, 2003
    [3] D. K. Misra, Radio Frequency And Microwave Communication Circuits-
    Analysis and Design. 2nd edition, Wiley-Interscience, 2004
    [4] B. Razavi, RF Microelectronics. 1st edition, Prentice Hall PTR, 1997
    [5] B. Razavi, Design of Analog CMOS Integrated Circuits. 1st edition, McGraw-
    Hill Science/Engineering/Math, 2000
    [6] T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuits. 2nd edition, Cambridge University Press, 2003
    [7] 袁帝文;王岳華;謝孟翰;王弘毅,“高頻通訊電路設計”,高立圖書有限公司,初版三刷,民91年
    [8] H. R. Rategh, H. Samavati and T. H. Lee , “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 780-787, May 2000
    [9] T. S. Song and E. S. Yoon, “A 1-V 5 GHz low phase noise LC-VCO using voltage-dividing and bias-level shifting technique,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems , pp. 87-90, Sept. 2004
    [9] T. H. Lee and A. Hajimiri , “Oscillator phase noise: A tutorial,” IEEE Journal of Solid-State Circuits , vol. 35, pp. 326-336, March 2000
    [10] P. Wi. Lai, L. Dobos and S. Long, ”A 2.4GHz SiGe low phase-noise VCO using on chip tapped inductor”, European Solid-State Circuits Conference, pp. 505-508, Sept. 2003
    [11] B. Soltanian and P. Kinget, ”A tail current-shaping technique to reduce phase noise in LC VCOs,” IEEE Custom Integrated Circuits Conference, pp. 579-582, Sept. 2005
    [12] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001
    [13] C. Y. Cha and S. G. Lee, ” A complementary Colpitts oscillator in CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 881-887, March 2005
    [14] R. Aparicio and A. Hajimiri, ”A CMOS differential noise-shifting Colpitts VCO,” IEEE International Solid-State Circuits Conference, vol. 1, pp. 288-289, Feb. 2002
    [15] H. R. Rategh and T. H. Lee,, “Superharmonic injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 813-821, June 1999
    [16] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1415-1424, Sept. 2004
    [17] K. Yamamoto, T. Norimatsu and M. Fujishima, “1 V 2 GHz CMOS frequency divider,” Electronics Letters, vol. 39, pp. 1227-1228, Aug. 2003
    [18] J. H. Gil and H. C. Shiny, ”On-chip helical inductors for CMOS RF-ICs,” Journal of the Korean Physical Society, vol. 40, pp. 49-51, January 2002
    [19] J. Bhattachaijee, D. Mukheijee, E. Gebara, S. Nuttinck and J. Laskar, “A 5.8 GHz fully integrated low power low phase noise CMOS LC VCO for WLAN applications,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 475-478, June 2002
    [20] S. M. Wu, R. Y. Liu and W. L. Chen; “A 5.8-GHz high efficient, low power, low phase noise CMOS VCO for IEEE 802.11a,” IEEE International Workshop on System-on-Chip for Real-Time Applications, pp. 94-97, July 2003
    [21] Y. K. Chu and H. R. Chuang, “A fully integrated 5.8 GHz U-NII band 0.18-μm CMOS VCO,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 287-289, July 2003
    [22] C. Samori, S. Levantino and V. Boccuzzi, “A -94dBc/Hz@l00kHz, fully-
    integrated, 5-GHz, CMOS VCO with 18% tuning range for Bluetooth applications,” IEEE Custom Integrated Circuits Conference, pp.201-204, May 2001
    [23] A. H. Mostafa, M.N. El-Gamal and R. A. Rafla, “A sub-1-V 4-GHz CMOS VCO and a 12.5-GHz oscillator for low-voltage and high-frequency applications,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 48, pp. 919-926, Oct. 2001
    [24] P. Kinget, “A fully integrated 2.7 V 0.35 μm CMOS VCO for 5 GHz wireless applications,” IEEE International Solid-State Circuits Conference, pp. 226-227, Feb. 1998
    [25] K. Yamamoto and M. Fujishima, ”55GHz CMOS frequency divider with 3.2GHz locking range,” European Solid-State Circuits Conference, pp. 135-138, Sept. 2004
    [26] W. F. Chung and K. K. M. Cheng, “CMOS RF analog frequency divider using switched capacitors,” Asia-Pacific Microwave Conference Proceedings, vol. 3, pp. 4, Dec. 2005
    [27] M. Acar, D. Leenaerts and B. Nauta, “A wide-band CMOS injection-locked frequency divider,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 211-214, June 2004
    [28] 陳玟蕙,“於互補式金氧半導體製程之對稱立體式被動元件及壓控震盪器設計”,國立中央大學電機工程研究所碩士論文,民91年
    [29] 陳宗興,“一個1.5伏特低功率消耗5.2G赫茲的CMOS頻率合成器之設計”,聖約翰技術學院自動化及機電整合研究所碩士論文,民94年
    [30] “Divide-by-Odd-Number Injection-Locked Frequency Dividers”[Online], Available: http://www.ece.rochester.edu/research/laics/ilfd.html

    QR CODE