簡易檢索 / 詳目顯示

研究生: 蕭紘騏
Hong-Qi, Xiao
論文名稱: 單晶CMOS微波加熱器
Monolithic CMOS Microwave Heaters
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 廖愛禾
Ai-Ho Liao
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 39
中文關鍵詞: 介電加熱微波加熱加熱器單晶加熱器溫度感測器
外文關鍵詞: Dielectric heating, microwave heating, heat applicator, monolithic heater, temperature sensor
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

兩個單晶CMOS微波加熱器已使用0.18奈米CMOS製成製作,其中微波由LC振盪器產生,而溫度感測器用來偵測溫度。感測器的溫度偵測範圍從-10 ℃ 到 35 ℃,其靈敏度為35 mV/℃。激活微波加熱器的關鍵在於透過時變電場觸發極性分子運動。當含有極性分子的代測物被置放至於加熱器的電感上方加熱30分鐘,成功使待測物的溫度上升1.4℃


Two monolithic microwave heaters have been fabricated in 0.18-μm CMOS process, where the microwave is generated by an LC oscillator, while temperature sensors are used for temperature detection. The temperature detection range of the temperature sensors is from -10 ℃ to 35 ℃, where the temperature sensitivity of sensors is 35 mV/℃. The key to activate the microwave heater is triggering the motions of polar molecules with time-varying electric field. When the phantom with polar molecules is placed above the inductor of the heater, its temperature is successfully raised by 1.4 ℃ in 30 minutes.

摘要 IV Abstract V 致謝 VI Contents VII List of Figures IX List of TABLEs XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter 2 The Monolithic Microwave Heater 4 2.1 Introduction 4 2.2 Microwave Heat Theory 5 2.3 The Design of Building Blocks 7 2.3.1 LC-Oscillator 7 2.3.2 Temperature Sensor 9 2.4 Electromagnetic Simulation of the Inductor 12 2.5 The Experimental Results 13 2.5.1 The LC-Oscillator Experimental Results 13 2.5.2 The Temperature Sensor Experimental Results 15 2.5.3 The Heating Experimental Results 17 Chapter 3 Reconfigurable Monolithic Microwave Heater 20 3.1 Introduction 20 3.2 Design of Building Blocks 21 3.2.1 LC-Oscillator and the Buffer Amplifier 21 3.2.2 Tunable Temperature Sensor 23 Chapter 4 Conclusion 26 Reference 27

[1] A. Rosen and F. Sterzer, "Applications of microwave heating in medicine," 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4), San Diego, CA, USA, 1994, pp. 1615-1618 vol.3.
[2] F. Sterzer, "Microwave medical devices," in IEEE Microwave Magazine, vol. 3, no. 1, pp. 65-70, Mar 2002.
[3] M. H. Falk and R. D. Issels, “Hyperthermia in oncology,” Int. J. Hypertherm., vol. 17, pp. 1–18, 2001.
[4] D. Kim, K. Kim, J. Oh, J. Cho, C. Cheon and Y. Kwon, "A K-Band Planar Active Integrated Bi-Directional Switching Heat Applicator With Uniform Heating Profile," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10, pp. 2581-2587, Oct. 2009.
[5] K. Kim, T. Seo, K. Sim and Y. Kwon, "Magnetic Nanoparticle-Assisted Microwave Hyperthermia Using an Active Integrated Heat Applicator," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2184-2197, July 2016.
[6] J. P. Jordan, "Application of vacuum-tube oscillators to inductive and dielectric heating in industry," in Electrical Engineering, vol. 61, no. 11, pp. 831-834, Nov. 1942.
[7] D. Wetz, D. Landen, S. Satapathy and D. Surls, "Inductive heating of materials for the study of high temperature mechanical properties," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1342-1351, August 2011.
[8] Handbook of Microwave Technology for Food Applications, Marcel Dekker Inc., New York, NY, USA, 2001
[9] General chemistry: the essential concepts, – 5th ed. Raymond Chang, McGraw-Hill Companies, Inc., 1221
[10] S. Palit, D. Varghese, H. Guo, S. Krishnan and M. A. Alam, "The Role of Dielectric Heating and Effects of Ambient Humidity in the Electrical Breakdown of Polymer Dielectrics," in IEEE Transactions on Device and Materials Reliability, vol. 15, no. 3, pp. 308-318, Sept. 2015.

無法下載圖示 全文公開日期 2023/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE