簡易檢索 / 詳目顯示

研究生: 張慈讌
Tzu-yen Chang
論文名稱: 以反應式雙離子共濺鍍法沉積氧化鋅鎂薄膜及其特性分析
Characterization of MgZnO thin films deposited by reactive dual ion beam sputter deposition
指導教授: 趙良君
Liang -chiun Chao 
口試委員: 黃鶯聲
Ying-sheng Huang
徐世祥
Shih-hsiang Hsu 
葉秉慧
Pinghui Sophia Yeh 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 75
中文關鍵詞: 氧化鋅鎂薄膜紫外光檢測器反應式雙離子共濺鍍法
外文關鍵詞: MgZnO thin films, UV detector, reactive dual ion beam sputter
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗使用反應式離子束共濺鍍Zn及Mg金屬靶沉積MgxZn1-xO薄膜,利用不同離子束電流調整x = 0 ~ 0.46,薄膜沉積於Si (100)、玻璃及石英基板。XRD量測結果中,MgxZn1-xO薄膜退火前或退火後隨著x提升a軸長度逐漸增加,而晶粒尺寸減少,當x > 0.40出現立方結構。PL光譜中可知退火後MgxZn1-xO薄膜放射峰能量由3.26 (x = 0) 增加至3.52 eV (x = 0.46),薄膜未退火前表面平整,而退火後薄膜表面平整度下降。由穿透率量測MgxZn1-xO薄膜之光學能隙,可由3.28 (x = 0) 提升至4.36 (x = 0.46) eV。MgxZn1-xO薄膜沉積時通入氮氣,或薄膜沉積後於氮氣氛下退火,皆可改善薄膜之電特性,含氮Mg0.03Zn0.97O薄膜退火後載子濃度較高、電阻率較低、載子遷移率高,電性較其他薄膜佳,較適合應用於元件製作。最佳含氮MgxZn1-xO薄膜所製備完成之光檢測器其鑑別率 (RUV/Rvisible) 可達1個數量級。


MgxZn1-xO thin films with x = 0 ~ 0.46 has been deposited on Si (100), glass and quartz substrates by reactive dual ion beam sputtering deposition. XRD analysis shows that as x increases, a-axis lattice constant increases while the grain size decreases. As x reaches 0.40, the cubic phase becomes discernable. PL study of MgxZn1-xO thin films shows emission energy varying from 3.26 (x = 0) to 3.52 eV (x = 0.46). The blueshift of emission energy is attributed to Mg atoms replacing Zn atoms that lead to increased bandgap. The optical bnadgap of MgxZn1-xO thin film increases from 3.36 to 4.36 eV as x increases from 0 to 0.46. The electrical properties of MgxZn1-xO can be improved by doping witn nitrogen or annealing in nitrogen ambient. Under optimized conditions, the rejection ratio of photodetectors fabricated by nitrogen doped MgxZn1-xO exhibit a rejection ratio of ~ 10.

目錄 論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 實驗動機 2 第二章 文獻回顧 3 2.1氧化鋅簡介 3 2.1.1氧化鋅特性 3 2.1.2 氧化鋅薄膜之發光機制 4 2.1.3 氧化鋅薄膜之應用 5 2.2 氧化鋅鎂簡介 7 2.2.1 氧化鋅鎂薄膜之結晶特性 7 2.2.2 氧化鋅鎂薄膜之光學特性 9 2.2.3 氧化鋅鎂薄膜之電特性 12 2.2.4 氧化鋅鎂薄膜之應用 15 2.3離子濺鍍介紹 20 2.3.1離子源 20 2.3.2離子束應用 21 2.4 薄膜簡介 22 2.4.1 薄膜成長機制 22 2.4.2薄膜的結構與缺陷 25 第三章 實驗步驟與分析系統 27 3.1實驗設備及流程 27 3.2分析儀器 31 3.2.1 X光光電子譜 (X-ray photoelectron spectroscopy, XPS) 31 3.2.2 X-ray 繞射 (X-ray diffraction, XRD) 33 3.2.3 光激發螢光光譜 (photoluminescence spectroscopy, PL) 35 3.2.4 場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 36 3.2.5 穿透率量測 (transmission) 37 3.2.6 霍爾效應量測 (Hall effect) 39 3.2.7光電流量測 (photocurrent) 42 第四章 實驗結果與討論 45 4.1 能量分散光譜儀分析 45 4.2 X-ray 繞射儀分析 46 4.3 光激發螢光光譜分析 51 4.4場發射掃描式電子顯微鏡分析 53 4.5 穿透率量測分析 56 4.6電性量測分析 59 4.7光電流量測分析 60 第五章 結論 64 參考文獻 66

[1] S. H. Jeong and J. H. Boo, “Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering,” Thin Solid Films, Vol. 447-448, pp. 105-110, 2004.
[2] D. C. Kim, B. H. Kong, C. H. Ahn and H. K. Cho, “Characteristics improvement of metalorganic chemical vapor deposition grown MgZnO films by MgO buffer layers,” Thin Solid Films, Vol. 518, pp. 1185-1189, 2009.
[3] M. Chen, Z. L. Pei, C. Sun, J. Gong, R. F. Huang and L. S. Wen, “ZAO:an attractive potential substitute for ITO in flat display panels,” Mater. Sci. Eng. B, Vol. 85, pp. 212-217, 2001.
[4] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B, Vol. 80, pp. 383-387, 2001.
[5] S. Ito, M. Sumiya, M. Mieno and H. Koinuma, “ Growth of MgxZn1-x film by MOCVD equipped laser heating system,” Mater. Sci. Eng. B, Vol. 173, pp. 11-13, 2010.
[6] L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, B. H. Li, Z. Z. Zhang, B. Yao. and D. X. Zhao, “Epitaxial growth of high quality cubic MgZnO films on MgO substrate,” J. Cryst. Growth, Vol. 312, pp. 875-877, 2010.
[7] W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang and D. Shen, “Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient,” Appl. Surf. Sci., Vol. 255, pp. 6745-6749, 2009.
[8] W. W. Liu, B. Yao, Y. F. Li, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zheng, D. Z. Shen and X. W. Fan, “Oxygen partial pressure dependence of the properties of MgZnO thin films during annealing,” J. Mater. Sci., Vol. 45, pp. 6206-6211, 2010.
[9] R. Ding, C. Xu, B. Gu, Z. Shi, H. Wang, L. Ba and Z. Xiao, “Effect of Mg Incorporation on Microstructure and Optical Properties of ZnO Thin Films Prepared by Sol-gel Method,” J. Mater. Sci., Vol. 26, pp. 601-604, 2010.
[10] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-x alloy films ,” Appl. Phys. Lett., Vol. 80, pp. 1529-1531, 2002.
[11] L. Sun, W. Cheng, F. Lin, X. Ma and W. Shi, “Changes of structure and optical energy gap induced by oxygen pressure during the deposition of ZnO films,” Physica B, Vol. 381, pp. 109-112, 2006.
[12] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., Vol. 55, pp. 67-72, 2002.
[13] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Mater. Lett., Vol. 57, pp. 4655-4659, 2003.
[14] T. Shimomura, D. Kim and M. Nakayama, “Optical properties of high-quality ZnO thin films grown by a sputtering method,” J. Lumin., Vol. 112, pp. 191-195, 2005.
[15] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spary pyrolysis technique,” Mater. Res.Bull., Vol. 35, pp. 39-46, 2000.
[16] H. Y. Tsai, “Characteristics of ZnO thin silm deposited by ion beam sputter,” J. Mater. Process. Technol., Vol. 192-193, pp. 55-59, 2007.
[17] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,” Appl. Surf. Sci., Vol. 142, pp. 233-236, 1999.
[18] F. Yakuphanoglu, Y. Caglar, S. Ilican and M. Caglar, “The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films,” Physica B, Vol. 394, pp. 86-92, 2007.
[19] J. F. Yan, Y. M. Lu, Y. C. Liu, H.W. Liang, B.H. Li, D.Z. Shen, J.Y. Zhang and X. W. Fan “Improvement of the crystalline quality of the ZnO epitaxial layer on a low-temperature grown ZnO buffer layer,” J. Cryst. Growth, Vol. 266, pp. 505-510, 2004.
[20] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
[21] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., Vol. 78, pp. 2285-2287, 2001.
[22] S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., Vol. 84, pp. 2287-2294, 1998.
[23] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, “Defect emissions in ZnO nanostructures,” Nanotechnol., Vol. 18, pp. 1-8, 2007.
[24] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., Vol. 148, pp. 110-113, 2001.
[25] G. Roussos, H. J. Schulz and M. Thiede, “Luminescence and related optical properties of iron ions in II–VI compounds,” J. Lumin., Vol. 31-32, pp. 409-411, 1984.
[26] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,” J. Lumin., Vol. 99, pp. 149-154, 2002.
[27] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., Vol. 79, pp. 7983-7990, 1996.
[28] C. Y. Zhao, X. H. Wang Zhang, Z. G. Ju, C. X. B. Yao. D. X. Zhao, D. Z. Shen and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, Vol. 519, pp. 1976-1979, 2011.
[29] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D.Z. Shen and X. W. Fan, “Ultraviolet Electroluminescence from MgZnO-Based Heterojuction Light-Emitting Diodes,” J. Phys. Chem. C, Vol. 113, pp. 2980-2982, 2009.
[30] P. P. Sahay and R. K. Nath, “Al-doped ZnO thin films as methanol sensors,” Sens. Actuators, B, Vol. 134, pp. 654-659, 2008.
[31] P. P. Sahay, S. Tewari, S. Jha and M. Shamsuddin, “Sprayed ZnO thin films for ethanol sensors ,” J. Mater. Sci., Vol. 40, pp. 4791-4793, 2005.
[32] P. P. Sahay, “Zinc Oxide thin films gas sensors for detection of acetone,” J. Mater. Sci., Vol. 40, pp. 4383-4385, 2005.
[33] F Paraguay D., M. Mili-Yoshida, J. Solis and W. Estrada L., “Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour,” Thin Solid Films, Vol. 373, pp. 137-140, 2000.
[34] X. L. Cheng, H. Zhao, L. H. Huo, S. Gao and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property,” Sens. Actuators, B, Vol. 102, pp.248-252, 2004.
[35] K. Arshak and I. Gaiden, “Development of a novel gas sensor based on oxide thick films,” Mater. Sci. Eng. B, Vol. 118, pp. 44-49, 2005.
[36] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sa kurai, Y. Yoshida, T. Yasuda and Y. Segawa, “MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy,” Appl. Phys. Lett., Vol. 72, pp.2466-2468, 1998.
[37] T. Takagi, H. Tanaka, S. Fujita and S. Fujita, “Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys (x~0.5) and Their Application to Solar-Blind Region Photodetectors,” Jpn. J. Apll. Phys.,Part 2, Vol. 42, pp.401-403, 2003.
[38] S. Han, D. Z. Shen, J. Y. Zhang, Y. M. Zhao, D. Y. Jiang, Z. G. Ju, D. X. Zhao and B. Yao, “ Characteristics of cubic MgZnO thin films grown by radio frequency reaction magnetron co-sputtering,” J. Alloys Compd., Vol. 485, pp.794 -797, 2009.
[39] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan and H. Shen, “ Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., Vol. 78, pp. 2787-2789, 2001.
[40] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1-xO on Si (100) for deep ultraviolet photodetecors,” Appl. Phys. Lett., Vol. 82, pp. 3424-3426, 2003.
[41] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “MgxZn1-xO-based photodetecors covering the whole solar-blind spectrum range,” Appl. Phys. Lett., Vol. 93, pp.173505-1-173505-3, 2008.
[42] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, “Room-temperature ultraviolet laser emission from self assembled ZnO microcrystallite thin films,” Appl. Phys. Lett., Vol. 72, pp. 3270-3272, 1998.
[43] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, pp. 1830-1832, 2002.
[44] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Hang and C. L. Zhang, “Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique,” Appl. Phys. Lett., Vol. 88, pp. 092101-1-092101-3, 2006.
[45] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton and D. P. Norton, “p-type behavior in phosphorus-doped (Zn,Mg) O device structures,” Appl. Phys. Lett., Vol. 84, pp. 3474-3476, 2004.
[46] Z. P. Wei, B. Yao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang. D. X. Zhao, X. W. Fan and Z. K. Tang, “Formation of p-type MgZnO by nitrogen doping,” Appl. Phys. Lett., Vol. 89, pp. 102104-1-102104-3, 2006.
[47] C. L. Perkins, S. H. Lee, X. Li, S. E. Asher and T. J. Coutts, “Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy,” Appl. Phys. Lett., Vol. 97, pp. 034907-1-034907-7, 2005.
[48] E. Monroy, F. Calle, J. L. Pau, F. J. Sanchez, E. Munoz, F. Omnes, B. Beaumont and P. Gibart, “Analysis and modeling of AlxGa1−xN-based Schottky barrier photodiodes,” Appl. Phys. Lett., Vol. 88, pp.2081-2091, 2000.
[49] M. J. Legodi, S. S. Hullavarad, S. A. Goodman, M. Hayes and F. D. Auret, “Defect characterization by DLTS of AlGaN UV Schottky photodetectors,” Physica B., Vol.308-310, pp.1189-1192, 2001.
[50] F. Yan, C. Qin, J. H. Zhao, M. Bush, G. Olesen, B. K. Ng, J. P. R. David, R. C. Tozer and M. Weiner, “Demonstration of 4H-SiC avalanche photodiodes linear array,” Solid-State Electron., Vol.47, pp.241-245, 2003.
[51] J. F. Hochedez, E. Verwichte, P. Bergonzo, B. Guizard, C. Mer, D. Tromson, M. Sacchi, P. Dhez, O. Hainaut, P. Lemaire and J.-C. Vial, “Future Diamond UV Imagers For Solar Physics,”Phys. Status Solidi A., Vol.181, pp.141-149, 2000.
[52] J. F. Mahoney, J. Perel and A. T. Forrester, “Capillaritron︰A new, versatile ion source,” Appl. Phys. Lett., Vol. 38, pp. 320-322, 1981.
[53] 羅吉宗,「薄膜科技與應用」,薄膜工程,修訂二版,第3-2-3-43頁 (2009).
[54] 汪建民,「材料分析」,材料科學-分析,第五刷,第353-355頁 (2006)
[55] X. Wang, T. Yang, G. Du, H. Liang, Y. Chang, W. Liu and Y. Xu, “Preparation and study of stoichiometric ZnO by MOCVD technique,” J. Cryst. Growth, Vol. 285, pp. 521-526, 2005.
[56] H. J. Kim, J. W. Bae, J. S. Kim, K.S. Kim, Y. C. Jang, G. Y. Yeom and N. E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature,” Thin Solid Films, Vol. 377-378, pp. 115-121, 2000.
[57] S. Fujihara, Y. Ogawa and A. Kasai, “Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing,” Chem. Mater., Vol. 16, pp. 2965-2968, 2004.
[58] C. Y. Liu, B. P. Zhang, Z. W. Lu, N. T. Binh, K. Wakatsuki, Y. Segawa and R. Mu, “Fabrication and characterization of ZnO film based UV photodetector,” J. Mater. Sci.-Mater. Electron., Vol. 306, pp. 197-201, 2009.
[59] R. Gosh and D. Basak, “Composition dependent ultraviolet photoresponse in MgxZn1-xO thin films,” J. Appl. Phys., Vol. 101, pp.113111-1-113111-6, 2007.

無法下載圖示 全文公開日期 2013/06/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE