簡易檢索 / 詳目顯示

研究生: 張鎮元
Cheng-Yuan Chang
論文名稱: 初始主應力垂直與旋轉45度對馬蹄形隧道開挖後之裂縫發展對比探討
The Investigation of Crack Development Comparison under the Initial Principal Stress of Vertical and 45° oriented for Tunnel Excavation of Horseshoe Type
指導教授: 陳志南
Chee-Nan Chen
口試委員: 彭桓沂
林志森
陳堯中
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 136
中文關鍵詞: PFC2D隧道主應力旋轉裂縫發展
外文關鍵詞: PFC2D, tunnel, Principal stress rotated, Crack development
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用PFC2D軟體探討四種不同覆岩深度為300、400、500、600公尺之處置隧道於良好之岩盤中進行開挖。處置隧道為馬蹄形隧道與下方之圓柱形處置孔所構成,隧道共分三階開挖,分別為第一階段的馬蹄形隧道開挖,與下方處置槽的第二、三階段的分階降挖。首先探討四種不同初始應力(K=0.5、1、2、3)對於主隧道處置孔開挖後之影響,並延伸探討當主應力方向為傾斜45度時對於馬蹄形主隧道之影響。
本研究結果顯示只有深度達500公尺並且K值達到2之初始應力狀態或者深度達300公尺K值達3之初始應力狀態,於開挖過程中皆會有張力裂縫之產生,當主應力旋轉45度時張力裂縫最先發生於初始應力σ3之連線方向上。而馬蹄形隧道於開挖穩定過後,最需注意(危險)之測點為隧道頂拱處,此測點於開挖過程中最大主應力σ1為最大,且主隧道周圍此點最容易產生張力裂縫。


The disposal tunnels excavated in the rock with the depths of 300,400,500 and 600 meters were investigated with the software of PFC2D in this research. The disposal tunnel is composed of horse-type tunnel and the cylindrical disposal holes below. Tunnel excavation consists of 3 stages. The 1st stage is the excavation of horse-type tunnel. The 2nd and 3rd stages are the excavations of disposal tanks below stepped excavated downward. The influence of initial stresses for excavated main tunnel disposal holes were investigated with K=0.5,1,2 and 3. It is further investigated as the principal stress is 45 degree as well.
The results of research show that the tensile cracks occurred during excavation only as the initial stress of 500m deep and K value reach 2 or 300 m deep and K value reach 3. The tensile crack occurred at the initial stress σ3 direction as the principal stress oriented 45 degree. The top arch of tunnel should be noticed although the excavated horse-type tunnel is stable. It is the point of maximum principal stress σ1 during excavation and most likely to occur tensile cracks of the main tunnel.

論文摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機與目的 1.2 研究方法與流程 1.3 論文內容 第二章 文獻回顧 2.1 PFC2D輸入參數相關之研究 2.1.1 巨觀參數與微觀參數介紹 2.1.2 微觀參數與巨觀參數之對應關係 2.2 顆粒尺寸及量測圓之相關之研究 2.2.1 顆粒數量之相關研究 2.2.2 顆粒粒徑比相關之研究 2.2.3 PFC2D量測圓之相關研究 2.3 岩體現地應力 2.4.1 初始應力K值之相關研究 2.3.2 主應力方向對隧道穩定性之影響 2.4 隧道開挖對周圍岩體之影響 第三章 數值分析方式說明 3.1 PFC2D程式概述 3.2 PFC2D基本假設 3.3 PFC2D程式運算原理 3.3.1 PFC2D力與位移關係 3.4 PFC2D接觸組成模式介紹 3.4.1 接觸勁度模式(Contact-Stiffness Model) 3.4.2 滑動模式(slip model) 3.4.3 鍵結模式(bonding models) 3.5 PFC2D模型建置方式 3.5.1 試體建置 3.5.2 牆施加速度模擬方式 3.5.3 量測圓理論 3.6 PFC2D模型參數 3.6.1 參數介紹 3.6.2 參數之選定 第四章 不同初始應力對於處置隧道開挖之探討 4.1 數值模型建置介紹 4.1.1 隧道尺寸及處置坑降挖方式 4.1.2 岩盤開挖之測點配置 4.1.3 邊界尺寸之選定 4.2 處置隧道於完整岩體中進行開挖之行為探討(H=300m,K=1) 4.2.1 三種不同開挖階段各測點之應力及位移分析與比較 4.2.2 鍵結力分佈及裂縫發展趨勢 4.3 四種不同初始應力K值狀態下隧道開挖之行為探討(H=300m,K=0.5、1、2、3) 4.3.1 三種不同開挖階段各測點之應力變化探討 4.3.2 鍵結力分佈及裂縫發展趨勢 4.4 四種不同覆蓋深度下馬蹄形隧道開挖之行為探討(H=300、400、500、600m,K=0.5、1、2、3) 4.4.1 不同深度及開挖階段各測點之應力變化探討 4.4.2 不同深度裂縫發展趨勢及範圍 第五章 初探主應力旋轉45度對馬蹄形隧道開挖後之裂縫發展探討 5.1 主應力旋轉數值模型建置 5.1.1 隧道尺寸及測點配置 5.1.2 邊界尺寸之選定 5.1.3 主應力模擬及計算方式 5.2 馬蹄形隧道於主應力旋轉狀態下進行開挖(H=300m,N=1、2、3) 5.2.1 開挖後各測點之應力分布及位移變化 5.2.2 開挖後之裂縫發展與鍵結力分布 5.3 不同深度下主應力旋轉之分析探討(H=300、400、500、600m,N=1、2、3) 5.3.1 開挖後各測點之應力變化趨勢 5.3.2 開挖後之裂縫發展與鍵結力分布 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

1.A. Fakhimi, F. Carvalho, T. Ishida and J.F. Labuz (2002), “Simulation of failure around a circular opening in rock”, International Journal of Rock Mechanics & Mining Sciences.
2.Andrea Lisjak, Daniel Figi and Giovanni Grasselli (2014), “Fracture development around deep underground excavations: Insights from FDEM modelling”, Journal of Rock Mechanics and Geotechnical Engineering.
3.D.O. Potyondy and P.A. Cundall (2004), “Abonded-particle model for rock”, International Journal of Rock Mechanics & Mining Sciences.
4.E. Hoek and C.D. Martin (2014), “Fracture initiation and propagation in intact rock e A review”, Journal of Rock Mechanics and Geotechnical Engineering.
5.Goodman, R. E. (1989), “Introduction to Rock Mechanics” , 2nd Ed., John Wiley&Sons.
6.Hoek. Martin (2014), “Fracture initiation and propagation in intact rock e A review”, Journal of Rock Mechanics and Geotechnical Engineering.
7.Itasca Consultin Group (2002), PFC2D (Particle Flow Code in 2 Dimensions) Version 3.0. Minneapolis, Minnesota.
8.Nick Barton and Baotang Shen (2017) , “Risk of shear failure and extensional failure around over-stressed excavations in brittle rock”, Journal of Rock Mechanics and Geotechnical Engineering.
9.SKB, “Numerical modelling of fracture displacements due to thermal load from a KBS-3 repository.” TR-02-08 (2002).
10.Tomofumi Koyama and Lanru Jing (2007), “Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—A particle mechanics approach”, Engineering Analysis with Boundary Elements.
11.Xiaobin Ding, Lianyang Zhang,Qi Zhang and Hehua Zhu (2014) , “Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results”, Rock Mech Rock Eng.
12.Zheming Zhu, Yuanxin Li, Jun Xie and Bang Liu (2015), “The effect of principal stress orientation on tunnel stability”, Tunnelling and Underground Space Technology.
13.台灣電力公司 (2009),「我國用過核子燃料最終處置初步技術可行性評估報告」。
14.李宏輝 (2008),「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立臺灣大學土木工程研究所,台北。
15.陳志南(1998),「岩體分類及其在隧道工程之應用」,隧道工程實務,科技圖書股份有限公司,第23-48頁,台北。
16.陳冠州(2012),「以PFC2D探討岩基加載之破壞演化」,碩士論文,國立台灣科技大學營建工程研究所,台北。
17.韓良蔚(2015),「圓型隧道於無節理與一條節理岩盤中開挖引致之裂縫發展探討」,碩士論文,國立台灣科技大學營建工程研究所,台北。
18.鄺寶山、王文禮 (1993),「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁。
19.羅科評 (2016),「於無節理及一條節理岩盤中隧道開挖引致之應力位移微觀發展探討」,碩士論文,國立台灣科技大學營建工程研究所,台北。

無法下載圖示 全文公開日期 2023/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE