簡易檢索 / 詳目顯示

研究生: 吳孝宗
Eric - Budiman Gosno
論文名稱: Elastic Image Registration with Applications of 2D/3D Alignment of Microscopic Images and 4D Registration of CT and MRI Data
Elastic Image Registration with Applications of 2D/3D Alignment of Microscopic Images and 4D Registration of CT and MRI Data
指導教授: 王靖維
Ching-Wei Wang
口試委員: 孫永年
Yung-Nien Sun
黃忠偉
Jong-Woei Whang
楊順聰
Shuenn-Tsong Young
陳中明
Chung-Ming Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 98
外文關鍵詞: Protein Mapping, Image Staining, Serial Section Microscopy Images, Multi-Modality CT and MRI Imaging
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Within the current clinical setting and healthcare technology development, medical imaging is a vital component of a large number of medical application and health diagnosis. Since information gained from two images acquired in the clinical track of events is usually of a complementary nature, proper integration of useful data obtained from the separate images are often desired. The first step in this integration process is to bring the modalities involved into spatial alignment, a procedure referred to as image registration.
    The intent of image registration is to align images with respect to each other. The input for this process is two images: the original image is known as the template/ reference image while the image that will be aligned with the respect of template/ reference image is known as the target image.
    In this research the application of various automated image registration framework for solving multi-dimensional medical image registration problems are presented which consisting of image registration for multiple protein maps at single cell resolution , 3-dimensional serial section microscopy images, and multimodal image registration on 3-dimensional CT and MRI image.

    Abstract i Publications ii Acknowledgment iii Table of Contents iv List of Figures vii List of Tables xiv List of Algorithm xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Aim and Objectives 2 1.3 Contributions and proposed method 2 1.4 Thesis Organization 3 Chapter 2 Automatic Alignment Framework for Multiple 2-Dimesional Protein Maps at Single Cell Resolution 5 2.1 Introduction 5 2.2 Data Material 10 2.3 Methods 11 2.4 Experimental Result 16 2.5 Discussion 20 Chapter 3 Automatic Image Registration for 3-Dimensional Serial-Section Microscopic Images 22 3.1 Introduction 22 3.2 Method 23 3.3 Experimental Result 34 3.4 Discussion 44 Chapter 4 Multimodal Image Registration Framework on 3-Dimensional CT and MR Images ……………………………………………………………………..45 4.1 Introduction 45 4.2 Data Material 46 4.3 Method 49 4.4 Experimental Result 80 4.5 Discussion 86 Chapter 5 Conclusion 87 5.1 Summary of Contribution 87 5.2 Future Work 88 References 90 Appendix A: Experimental Result for Landmark Searching Preprocessing in Elastic Local Registration (section 4.3.3) 94 Appendix B: Experimental Result of various combination between smoothing filter (Median, Mean Filter) and DoG 97

    [1] Derek L G Hill and Philipp G Batchelor and Mark Holden and David J Hawkes, “Medical image registration,” Phys. Med. Biol., vol. 46, no. 3, p. R1, 2001.
    [2] J. B. A. Maintz and M. A. Viergever, “An Overview of Medical Image Registration Methods,” In Symposium of the Belgian hospital physicists association (SBPH-BVZF, 1996.
    [3] V. R. . Mani and D. S. rivazhagan, “Survey of Medical Image Registration,” J. Biomed. Eng. Technol., vol. 1, no. 2, pp. 8–25, 2013.
    [4] A. Pitiot and A. Guimond, “Geometrical regularization of displacement fields for histological image registration,” Med Image Anal, vol. 12, pp. 16–25, 2008.
    [5] A. . Utal, A. . Stopka, M. Roy, and P. . Coleman, “PEP-19 immunohistochemistry defines the basal ganglia and associated structures in the adult human brain, and is dramatically reduced in Huntington’s disease,” Neuroscience, vol. 86, no. 4, pp. 1055–1063, Jun. 1998.
    [6] M. Eriksdotter-Nilsson, H. Björklund, and L. Olson, “Laminin immunohistochemistry: a simple method to visualize and quantitate vascular structures in the mammalian brain,” J. Neurosci. Methods, vol. 17, no. 4, pp. 275–286, Sep. 1986.
    [7] S. M. Clinton, M. E. Glover, A. Maltare, A. M. Laszczyk, S. J. Mehi, R. K. Simmons, and G. D. King, “Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood,” Brain Res., vol. 1527, pp. 1–14, Aug. 2013.
    [8] A. Cardona, “An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy,” P Lo Biol., vol. 8, p. e1000502, 2010.
    [9] A. Cardona, “TrakEM2 Software for Neural Circuit Reconstruction,” P Lo One, vol. 7, p. e38011, 2012.
    [10] M. Chakravarty, “The creation of a brain atlas for image guided neurosurgery using serial histological data,” Neuro Image, vol. 30, pp. 359–376, 2006.
    [11] J. Dauguet, “Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain,” Kidney Int, vol. 164, pp. 191–204, 2007.
    [12] Y. Tan, J. Hua, and M. Dong, “3D reconstruction from 2D images with hierarchical continuous simplices,” Vis. Comput, vol. 23, pp. 905–914, 2007.
    [13] S. Saalfeld, A. Cardona, V. Hartenstein, and P. Tomancak, “As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets,” Bioinfo., vol. 26, pp. i57–i63, 2010.
    [14] S. Saalfeld, R. Fetter, A. Cardona, and P. Tomancak, “Elastic volume reconstruction from series of ultra-thin microscopy sections,” Nat Methods, vol. 9, pp. 717–720, 2012.
    [15] H. Peng, “BrainAligner: 3D registration atlases of Drosophila brains,” Nat Methods, vol. 8, pp. 493–498, 2011.
    [16] C.-W. Wang, E. B. Gosno, and Y.-S. Li, “Fully automatic and robust 3d registration of serial-section microscopic images,” Sci. Rep., vol. 5, p. 15051, 2015.
    [17] I. Arganda-Carreras, C. S. Sorzano, R. Marabini, J. Carazo, C. Ortiz-de-Solorzano, and J. Kybic, “Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization,” in Computer Vision Approaches to Medical Image Analysis, vol. 4241, R. Beichel and M. Sonka, Eds. Springer Berlin Heidelberg, 2006, pp. 85–95.
    [18] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.
    [19] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Commun ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.
    [20] H. Peng, Z. Ruan, F. Long, J. H. Simpson, and E. W. Myers, “V3d enables real-time 3d visualization and quantitative analysis of large-scale biological image data sets,” Nat Biotech, vol. 28, pp. 348–353, 2010.
    [21] C.-W. Wang, S.-M. Ka, and A. Chen, “Robust image registration of biological microscopic images,” Sci. Rep., vol. 4, p. 6050--, Aug. 2014.
    [22] C.-W. Wang and H.-C. Chen, “Improved image alignment method in application to X-ray images and biological images,” Bioinformatics, vol. 29, no. 15, pp. 1879–1887, Aug. 2013.
    [23] J. C. Fiala, “Reconstruct: a free editor for serial section microscopy,” J Microsc., vol. 218, pp. 52–61, 2005.
    [24] S. Gerhard, J. Funke, J. Martel, A. Cardona, and R. Fetter, “Segmented anisotropic ssTEM dataset of neural tissue,” 2013.
    [25] J. Schindelin, “Fiji: an open-source platform for biological-image analysis,” Nat Meth, vol. 9, pp. 676–682, 2012.
    [26] C. Sorzano, P. Thevenaz, and M. Unser, “Elastic Registration of Biological Images using Vector-Spline Regularization,” Ieee Trans Biomed Engin, vol. 52, pp. 652–663, 2005.
    [27] A. Dogra and M. S. Patterh, “CT and MRI Brain Images REgistration for Clinical Applications,” Cancer Sci. Ther., vol. 6, pp. 018–026.
    [28] X. WANG, L. LI, C. HU, J. QIU, Z. XU, and Y. FENG, “A comparative study of three CT and MRI registration algorithms in nasopharyngeal carcinoma,” J. Appl. Clin. Med. Phys. Vol 10 No 2 2009, Apr. 2009.
    [29] G. T. Y. Chen and C. A. Pelizzari, “Radiation therapyImage correlation techniques in radiation therapy treatment planning,” Comput. Med. Imaging Graph., vol. 13, no. 3, pp. 235–240, May 1989.
    [30] V. S. Khoo, E. J. Adams, F. Saran, J. L. Bedford, J. R. Perks, A. P. Warrington, and M. Brada, “A comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas,” Int. J. Radiat. Oncol., vol. 46, no. 5, pp. 1309–1317, Mar. 2000.
    [31] T. Nishioka, T. Shiga, H. Shirato, E. Tsukamoto, K. Tsuchiya M.D, T. Kato, K. Ohmori, A. Yamazaki, H. Aoyama, S. Hashimoto, T.-C. Chang, and K. Miyasaka, “Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas,” Int. J. Radiat. Oncol. • Biol. • Phys., vol. 53, no. 4, pp. 1051–1057.
    [32] S. L. Sailer, J. G. Rosenman, M. Soltys, T. J. Cullip, and J. Chen, “Improving treatment planning accuracy through multimodality imaging,” Int. J. Radiat. Oncol., vol. 35, no. 1, pp. 117–124, Apr. 1996.
    [33] H. Aoyama, H. Shirato, T. Nishioka, S. Hashimoto, K. Tsuchiya, K. Kagei, R. Onimaru, Y. Watanabe, and K. Miyasaka, “Magnetic resonance imaging system for three-dimensional conformal radiotherapy and its impact on gross tumor volume delineation of central nervous system tumors,” Int. J. Radiat. Oncol. • Biol. • Phys., vol. 50, no. 3, pp. 821–827.
    [34] Beekley Medical ®, “PinPoint® for Small Field of View Imaging Ref #187.”
    [35] Beekley Medical ®, “PinPoint® for Image Registration Ref #128.”
    [36] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A, vol. 4, no. 4, pp. 629–642, Apr. 1987.
    [37] S. Umeyama, “Least-Squares Estimation of Transformation Parameters Between Two Point Patterns,” IEEE Trans Pattern Anal Mach Intell, vol. 13, no. 4, pp. 376–380, Apr. 1991.
    [38] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point Sets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 5, pp. 698–700, Sep. 1987.
    [39] O. D. Faugeras and M. Hebert, “A 3-D recognition and positioning algorithm using geometrical matching between primitive surface,” in Int. Joint, Karlshrue, West Germany, 1983, pp. 996–1002.
    [40] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 922–923, Sep. 1976.
    [41] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of vectors,” Acta Crystallogr. Sect. A, vol. 34, no. 5, pp. 827–828, Sep. 1978.
    [42] T. S. Huang, S. D. Blostein, and E. A. Margerum, “Least-squares estimation of motion parameters from e-D point correspondences,” in IEEE, Miami Beach, FL, 1986.
    [43] H. Jin, 2D Mutual Information Matching using Optimization toolbox. 2005.
    [44] K. Artyushkova, Automatic Image Registration using (Normalized) Mutual Information for users of IP toolbox. 2006.
    [45] Mathworks (c) inc, Matlab. Mathworks (c) inc, 2013.
    [46] Mathworks (c) inc, Matlab Image Processing Toolbox. Mathworks (c) inc.
    [47] S. Leibfarth, D. Mönnich, S. Welz, C. Siegel, N. Schwenzer, H. Schmidt, D. Zips, and D. Thorwarth, “A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning,” Acta Oncol., vol. 52, no. 7, pp. 1353–1359, 2013.
    [48] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “elastix: A Toolbox for Intensity-Based Medical Image Registration,” IEEE Trans. Med. Imaging, vol. 29, no. 1, pp. 196–205, Jan. 2010.
    [49] D. P. Shamonin, E. E. Bron, B. P. F. Lelieveldt, M. Smits, S. Klein, and M. Staring, “Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease,” Front. Neuroinformatics, vol. 7, no. 50, 2014.
    [50] SPSS Inc., “SPSS for Windows, Rel.17.0.1. 2008.,” 2008.

    無法下載圖示 全文公開日期 2021/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE