簡易檢索 / 詳目顯示

研究生: 鄭宇廷
Yu-Ting Cheng
論文名稱: 快速波束控制之 Gb/s 室內無線光通訊技術之研究
Indoor Optical Wireless Communication with Fast Beam-Steering and Gb/s Transmission Capability
指導教授: 宋峻宇
Jiun-Yu Sung
口試委員: 李三良
San-Liang Lee
徐世祥
Shih-Hsiang Hsu
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 55
中文關鍵詞: 無線光通訊高頻傳輸光束控制技術
外文關鍵詞: Optical wireless communication (OWC), beam-steering, Gb/s transmission
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技的高速發展,人工智慧,高頻傳輸等應用也隨之快速擴張,而相比於無線電通訊,紅外線無線光通訊(IR-OWC)在目前雖然並不普及,但其可以輕易使用到THz的頻寬,並且其豐富的自由頻普及可重複利用現有的高速光纖網路技術,因此被認為是未來通訊方式的可用方法,IR-OWC通常採用指向性波束進行資料傳輸,而波束須根據特定服務區內的用戶位置做動態轉向設定,因此高性能的光束控制技術對於OWC系統具有重要意義。
本論文開發出一種具有μs控制響應和Gb/s傳輸資料速率的波束整合控制器,波束控制器由高速電子陣列開關構成,可以將光束切換指定位置,並利用PCB板進一步設計出波束整合控制器和高速SFP訊號收發模組,成功執行具有1μs的轉向速率和~1Gb/s資料傳輸速率(~2.488Gb/s離線速率)的全雙工及時IR-OWC系統。


High-volume applications such as VR/AR/XR and artificial intelligence (AI) are quickly developed. This pushes the demand for more transmission bandwidth. Infrared optical wireless communication (IR-OWC) is especially advantageous for the ultra-high-speed applications because it has abundant free spectrum and is capable of directly re-using the mature fiber-optic communication technologies. IR-OWC commonly applies directional beams for signal transmission. In order to serve users within specific areas, the beams must be dynamically steered to different positions according to where the users are. High performance beam-steering technologies are therefore significant for the OWC systems.
In this thesis, an integrated beam-steerer capable of μs steering response and Gb/s transmission data rate is developed. The beam-steerer is built by a high-speed electronic switch array, which directs the signals towards corresponding spatial positions and beam directions. Since the electronic switch can be configured fast, rapid beam-steering is performed. Dedicated printed circuit boards (PCBs) are further designed to integrate the beam-steerer and the high-speed SFP signal transceiver modules. Full-duplex real-time IR-OWC system with 1 μs steering rate and ~1 Gb/s data rate (~2.488Gb/s offline rate) is successfully performed.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1 前言 1 1.1.1 高容量無線通訊發展 2 1.2 無線光通訊簡介 4 1.3 實驗動機 7 1.4 文獻回顧 8 1.5 論文架構 11 第二章 系統概述 13 2.1 高速波束掃描原理 13 2.2 系統架構 15 2.3 實驗元件 15 2.3.1 光電轉換盒 15 2.3.2 準直器(Collimator) 16 2.4 SFP(SMALL FORM-FACTOR PLUGGABLE)原理及應用 16 2.4.1 SFP操作原理 17 2.4.2 BIDI模組 18 2.4.3 SFP腳位介紹 19 2.5 章節小節 21 第三章 核心電路板設計與製作 22 3.1 高速切換IC電路板製作 22 3.2 高速切換IC測試結果 25 3.3 光收發模組驅動板設計與製作 28 3.4 光收發模組100歐姆數據量測 28 3.4.1 光收發模組 S參數量測 29 3.4.2 光收發模組誤碼率量測 30 3.4.3 高速Switch連接100歐姆光收發模組驅動板量測與分析 31 3.5 光收發模組 50歐姆驅動板製作與量測 34 3.6 本章小節 36 第四章 系統分析與量測結果 38 4.1 光收發模組系統 38 4.2 GB/S模組之無線光通訊傳輸結果 41 4.3 BEAM STEERING 傳輸結果 43 4.4 章節總結 49 第五章 結論與未來展望 50 5.1 結論 50 5.2 未來展望 50 參考文獻 52

[1] H. Zhao et al., "Application of 5G Communication Technology in Ubiquitous Power Internet of Things," in 2020 Asia Energy and Electrical Engineering Symposium (AEEES), 29-31 May 2020 , pp. 618-624, doi: 10.1109/AEEES48850.2020.9121561.
[2] A. Anttonen, P. Ruuska, and M. Kiviranta, "3GPP nonterrestrial networks: A concise review and look ahead," 2019.
[3] "通訊發展圖." https://www.i-pex.com/zh-tw/library/article/what-is-5g (accessed 07/02, 2024).
[4] "台灣5G行動計畫." https://www.ey.gov.tw/Page/5B2FC62D288F4DB7/92653e84-e0fd-49e2-8f93-c0efc8f7eab7 (accessed 07/14, 2024).
[5] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, "Prospective Multiple Antenna Technologies for Beyond 5G," IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1637-1660, 2020, doi: 10.1109/JSAC.2020.3000826.
[6] R. Giuliano, "The Next Generation Network in 2030: Applications, Services, and Enabling Technologies," in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 20-21 Oct. 2021, pp. 294-298, doi: 10.23919/EECSI53397.2021.9624241.
[7] H. Uddin et al., "IoT for 5G/B5G Applications in Smart Homes, Smart Cities, Wearables and Connected Cars," in 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 11-13 Sept. 2019 , pp. 1-5, doi: 10.1109/CAMAD.2019.8858455.
[8] M. Kavehrad, M. S. Chowdhury, and Z. Zhou, Short-range optical wireless: theory and applications. John Wiley & Sons, 2016.
[9] K. Wang et al., "Evolution of Short-Range Optical Wireless Communications," Journal of Lightwave Technology, vol. 41, no. 4, pp. 1019-1040, 2023, doi: 10.1109/JLT.2022.3215590.
[10] I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, "Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade," IEEE Transactions on Communications, vol. 70, no. 6, pp. 4250-4285, 2022, doi: 10.1109/TCOMM.2022.3171800.
[11] T. E. B. Cunha, J. P. M. G. Linnartz, and X. Deng, "Achievable rate of LED-based distributed MIMO OWC systems under a per-LED power constraint," in 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 6-9 Sept. 2021, pp. 1-6, doi: 10.1109/ISWCS49558.2021.9562203.
[12] A. Tuantranont, V. M. Bright, J. Zhang, W. Zhang, J. A. Neff, and Y. C. Lee, "Optical beam steering using MEMS-controllable microlens array," Sensors and Actuators A: Physical, vol. 91, no. 3, pp. 363-372, 2001/07/15/ , doi: https://doi.org/10.1016/S0924-4247(01)00609-4.
[13] Y. Wang et al., "2D broadband beamsteering with large-scale MEMS optical phased array," Optica, vol. 6, no. 5, pp. 557-562, 2019.
[14] T. Koonen, J. Oh, K. Mekonnen, Z. Cao, and E. Tangdiongga, "Ultra-High Capacity Indoor Optical Wireless Communication Using 2D-Steered Pencil Beams," Journal of Lightwave Technology, vol. 34, no. 20, pp. 4802-4809, 2016, doi: 10.1109/JLT.2016.2574855.
[15] Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, "Terahertz beam steering and variable focusing using programmable diffraction gratings," Optics express, vol. 21, no. 2, pp. 2347-2354, 2013.
[16] A. Gomez et al., "Design and Demonstration of a 400 Gb/s Indoor Optical Wireless Communications Link," Journal of Lightwave Technology, vol. 34, no. 22, pp. 5332-5339, 2016, doi: 10.1109/JLT.2016.2616844.
[17] M. J. Heck, "Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering," Nanophotonics, vol. 6, no. 1, pp. 93-107, 2017.
[18] "SFP MSA協定." https://www.snia.org/technology-communities/sff/specifications (accessed 07/14, 2024).
[19] "SFP腳位圖." https://img-en.fs.com/file/datasheet/sfp1g-sx-31.pdf (accessed 07/14, 2024).
[20] "SFP應用電路圖." https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=1654845&DocType=DS&DocLang=&s_cid=1046 (accessed 07/14, 2024).
[21] "傳輸線理論 POZAR." file:///C:/Users/user/Downloads/Pozar_Microwave%20Engineering(2012).pdf (accessed 07/14, 2024).
[22] R. B. Marks and D. F. Williams, "Characteristic impedance determination using propagation constant measurement," IEEE Microwave and Guided Wave Letters, vol. 1, no. 6, pp. 141-143, 1991, doi: 10.1109/75.91092.
[23] G. Breed, "There’s nothing magic about 50 ohms," High Frequency Electronics, vol. 6, no. 6, pp. 6-7, 2007.
[24] D. Torungrueng and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission‐line problems," Microwave and Optical Technology Letters, vol. 40, no. 1, pp. 57-61, 2004.
[25] W. B. Kuhn and A. D. Fund, "Power supply bypass capacitors—Myths and realities," in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 17-19 May 2015 , pp. 405-408, doi: 10.1109/RFIC.2015.7337791.
[26] "RO450B." https://www.ipcb.tw/rf-pcb/141.html (accessed 07/14, 2024).
[27] S. M. Navidpour, M. Uysal, and M. Kavehrad, "BER performance of free-space optical transmission with spatial diversity," IEEE Transactions on wireless communications, vol. 6, no. 8, pp. 2813-2819, 2007.
[28] "Iperf3." https://iperf.fr/ (accessed 07/14, 2024).
[29] "Arduino." https://www.arduino.cc/ (accessed 07/14, 2024).

無法下載圖示 全文公開日期 2029/08/12 (校內網路)
全文公開日期 2029/08/12 (校外網路)
全文公開日期 2029/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE