簡易檢索 / 詳目顯示

研究生: 吳怡瑩
Yi-Ying Wu
論文名稱: 以動態位移反應函數建立建築土壤互制系統之損傷偵測指標
A damage indicator for building-soil systems using dynamic displacement frequency response functions
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 邱建國
Chien-Kuo Chiu
廖國偉
Kuo-Wei Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 結構損傷偵測頻率域反應函數損傷指標土壤結構互制
外文關鍵詞: structural damage detection, frequency response function, damage indicator, soil-structure interaction
相關次數: 點閱:222下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究發展一套適用於建築土壤互制系統之損傷樓層偵測方法,分析結構系統受損前後位移頻率域反應函數之曲率差異,建立正規化樓層損傷指標。數值模擬以五層樓鋼筋混凝土結構為例,第一部分探討損傷指標在水平簡諧波作用下的偵測表現,並評估結構損傷程度、隨機雜訊強度以及土壤剪力波速之影響。第二部分驗證損傷指標在實際地震作用下之適用性,並分析取樣頻率間距對指標偵測表現之影響。同時,援引兩種現有採用頻率反應函數曲率的損傷指標作為比較,並應用接收者操作特徵(ROC)曲線分析,衡量各損傷指標之偵測能力。
      研究結果顯示引用之兩種指標分別受雜訊影響甚鉅,且在重型建物置於軟弱土壤時之損傷偵測能力低落。相較之下,本文所建立之正規化樓層損傷指標能夠準確定位微損樓層,其偵測能力較不受雜訊影響,降低取樣頻率間距亦有助於偵測準確度。綜言之,本指標於固定基盤模式可展現穩定且準確之損傷偵測能力,且於建築土壤互制系統可有效考量土壤結構互制作用之影響。


      This study develops a damage detection method for building-soil systems. A normalized damage indicator (NDI) utilizing frequency response functions is proposed to localize damaged stories in building structures. To evaluate the proposed damage indicator, a numerical example of a five-story RC building subjected to harmonic waves is investigated in this study. The influence of the random noise and the structural damage extent as well as soil shear velocity are examined. In addition, the new approach is further applied in the earthquake analysis. The ROC curve analysis is also implemented to qualify the detection performance of the damage indicators and two existing FRF-based damage indicators are employed for a comprehensive comparison.
      The analyzed results show that the two existing damage indicators are significantly affected by the random noise with a rather low accuracy in detecting damage of heavy buildings situated on soft soil. In contrast, even though a high level of noise is considered, NDI is able to detect slightly damaged stories in the buildings with relatively high accuracy. The accuracy of this indicator may also be improved by shortening the frequency intervals. Furthermore, NDI has the best detection performance among all three indicators in fixed-base models; for building-soil systems, NDI shows its ability to incorporate the effects of soil-structure interaction efficiently.

    摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章  緒論  1.1  研究動機與目的  1.2  研究內容與方法 第二章  文獻回顧  2.1  結構損傷偵測方法  2.2  位移頻率域反應函數曲率指標 第三章  研究方法  3.1  頻率域反應函數  3.2  損傷指標   3.2.1 形狀函數   3.2.2 正規化損傷指標  3.3  均勻雜訊模擬  3.4  ROC曲線 第四章  水平簡諧波作用下的損傷偵測  4.1  分析模式  4.2  固定基盤模式   4.2.1 損傷程度之影響   4.2.2 隨機雜訊之影響  4.3  建築土壤互制系統   4.3.1 損傷程度之影響   4.3.2 隨機雜訊之影響  4.4  土壤剪力波速之影響  4.5  綜合討論 第五章  實際地震作用下的損傷偵測  5.1  分析模式  5.2  偵測結果  5.3  取樣頻率間距之影響 第六章  結論與建議  6.1  結論  6.2  建議 參考文獻 附錄  A.1  基底位移曲率  A.2  避免中小度地震降伏之設計地震力

    [1] Rytter, A. (1993). Vibrational based Inspection of Civil Engineering Structures (PhD Thesis, Aalborg University, Denmark).
    [2] Doebling, S. W., Farrar, C. R., Prime, M. B. and Shevitz, D. W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review (No. LA-13070-MS). Los Alamos National Lab., NM, USA.
    [3] Doebling, S. W., Farrar, C. R. and Prime, M. B. (1998). A summary review of vibration-based damage identification methods. Shock and Vibration Digest, 30(2), 91-105.
    [4] Sohn, H., Farrar, C. R., Hemez, F. and Czarnecki, J. (2003). A Review of Structural Health Monitoring Literature: 1996–2001 (No. LA-13976-MS). Los Alamos National Lab., NM, USA.
    [5] Farrar, C. R., Doebling, S. W., Cornwell, P. J. and Straser, E. G. (1997). Variability of modal parameters measured on the Alamosa Canyon Bridge. In Proceedings of the XV International Modal Analytical Conference, 257-263. Orlando, Florida.
    [6] Doebling, S. W., Farrar, C. R. and Goodman, R. S. (1997). Effects of measurement statistics on the detection of damage in the Alamosa Canyon Bridge. In Proceedings of the XV International Modal Analytical Conference, 919-929. Orlando, Florida.
    [7] Allemang, R. J. and Brown, D. L. (1982). A correlation coefficient for modal vector analysis. In Proceedings of the I International Modal Analytical Conference, 110-116. Orlando, Florida.
    [8] Lieven, N. A. J. and Ewins, D. J. (1988). Spatial correlation of mode shapes, the coordinate modal assurance criterion (COMAC). In Proceedings of the VI International Modal Analytical Conference, 690-695. Kissimmee, Florida.
    [9] Salawu, O. S. and Williams, C. (1995). Bridge assessment using forced-vibration testing. Journal of Structural Engineering, 121(2), 161-173.
    [10] Ratcliffe, C. P. (1997). Damage detection using a modified Laplacian operator on mode shape data. Journal of Sound and Vibration, 204(3), 505-517.
    [11] Pandey, A. K., Biswas, M. and Samman, M. N. (1991). Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration, 145(2), 321-332.
    [12] Jauregui, D. V. and Farrar, C. R. (1996). Comparison of damage identification algorithm on experimental modal data from a bridge. In Proceedings of the XIV International Modal Analysis Conference, 1423-1429. Dearborn, Michigan.
    [13] Stubbs, N., Kim, J. T. and Farrar, C. R. (1995). Field verification of a nondestructive damage localization and severity estimation algorithm. In Proceedings of the XIII International Modal Analysis Conference, 210-218. Nashville, Tennessee.
    [14] Jauregui, D. V. and Farrar, C. R. (1996). Damage identification algorithms applied to numerical modal data from a bridge. In Proceedings of the XIV International Modal Analysis Conference, 119-125. Dearborn, Michigan.
    [15] Liu, X., Lieven, N. A. J. and Escamilla-Ambrosio P. J. (2009). Frequency response function shape-based methods for structural damage localisation. Mechanical Systems and Signal Processing, 23(4), 1243-1259.
    [16] Maia, N. M. M., Silva, J. M. M. and Sampaio, R. P. C. (1997). Localization of damage using curvature of the frequency-response -functions. In Proceedings of the XV International Modal Analysis Conference, 942-946. Orlando, Florida.
    [17] Sampaio, R. P. C., Maia, N. M. M. and Silva, J. M. M. (1999). Damage detection using the frequency response function curvature method. Journal of Sound and Vibration, 226(5), 1029-1042.
    [18] Maia, N. M. M. and Silva, J. M. M., Almas, E. A. M. and Sampaio, R. P. C. (2003). Damage detection in structures: from mode shape to frequency response function methods. Mechanical Systems and Signal Processing, 17(3), 489-498.
    [19] Lysmer, J., Ostadan, F., Tabatabaie, M., Vahdani, S. and Tajirian, F. (1988). SASSI a system for analysis of soil-structure-interaction. User’s Manual.
    [20] 廖克弘,2002。「圓盤基礎動態反應之無因次化參數分析」(博士論文),國立台灣科技大學營建工程系,台北市。
    [21] Limongelli, M. P. (2011). The interpolation damage detection method for frames under seismic excitation. Journal of Sound and Vibration, 330(22), 5474-5489.
    [22] Zhu, H., Li, L. and He, X. Q. (2011). Damage detection method for shear buildings using the changes in the first mode shape slopes. Computers & Structures, 89(9), 733-743.
    [23] Worden, K. (1997). Structural Fault Detection Using a Novelty Measure. Journal of Sound and Vibration, 201(1), 85–101.
    [24] Hou, Z., Noori, M. and Amand, R. S. (2000). Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics, 126(7), 677-683.
    [25] Hera, A. and Hou, Z. (2004). Application of wavelet approach for ASCE structural health monitoring benchmark studies. Journal of Engineering Mechanics, 130(1), 96-104.
    [26] Ovanesova, A. V. and Suarez, L. E. (2004). Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 26(1), 39-49.
    [27] Kim, H. and Melhem, H. (2004). Damage detection of structures by wavelet analysis. Engineering Structures, 26(3), 347-362.
    [28] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.
    [29] Swets, J. A., Dawes, R. M. and Monahan, J. (2000). Better DECISIONS through SCIENCE. Scientific American, 283, 82-87.

    QR CODE