簡易檢索 / 詳目顯示

研究生: 黃品諭
Pin-Yu Huang
論文名稱: 應用於升壓電力轉換之新型台科大多倍壓電路
A Novel Taiwan Tech Voltage Multiplier for Step-Up Power Conversion Applications
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
林瑞禮
Ray-Lee Lin
陳建富
Jiann-Fuh Chen
陳耀銘
Yaow-Ming Chen
吳財福
Tsai-Fu Wu
羅有綱
Yu-Kang Lo
林志毅
C. Y. Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 124
中文關鍵詞: 電流饋入式轉換器高電壓增益轉換率台科大倍壓整流電路台科大多倍壓整流電路
外文關鍵詞: current-fed boost converter, high voltage gain, Taiwan Tech voltage doubler rectifier, Taiwan Tech voltage multiplier rectifier
相關次數: 點閱:318下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由合併兩個傳統的Cockcroft-Walton半波多倍壓整流電路,本論文提出一個新型之台科大多倍壓整流電路。結合傳統雙電感電流饋入式轉換器,得以使用較低應力的半導體元件及較低的變壓器匝數比,實現所需的電壓增益。此外,電路更因具有輸出電壓漣波抵消機制,可以使用較小容值之聚丙烯(PP)電容取代大容值的電解電容,達成電壓漣波規格,進而提高整體轉換器的可靠度。
    對高輸出電壓應用之輸出電壓漣波與輸出電壓降規格的性能,所提出之電路有顯度的降低,可以使用更多級的倍壓模組與更低應力的元件,滿足規格之輸出電壓。上列之特性顯示,本論文提出之多倍壓整流電路適合在如再生能源發電系統需求或是高電壓應用的醫療設備之高頻、高效率、高輸出電壓及高可靠度的電力轉換應用。
    本論文以雙電桿電流饋入式架構為一次側電路,搭配所提出之台科大倍壓整流電路與台科大多倍壓整流電路,分別在第二章及第三章進行理論分析與相關公式的推導,並且以輸入電壓24-36V輸出380V/380W之規格設計,分別完成實作電路。進而以相同規格實驗之傳統Cockcroft-Walton六倍壓電路及對稱式六倍壓電路,比較其電路特性。


    By combining two Cockcroft-Walton half-wave voltage multiplier rectifiers, a novel Taiwan Tech voltage multiplier rectifier is proposed in this dissertation. Applying it to a widely used dual-inductor current-fed converters, low voltage rating devices with low turns-ratio transformer can be used to achieve the required high voltage gain. Moreover, output voltage ripple is significantly reduced due to its built-in output voltage ripple cancellation mechanism. Consequently, small capacitance film capacitors can be used instead of high voltage-rating electrolytic capacitors. Thus, the reliability of the power converter can be enhanced.
    Furthermore, the proposed has significantly reduction in two key issues, voltage drop and voltage ripple, for high output voltage applications. Thus, more stages voltage multiplier with lower voltage-rating components can be applied to meet the same output voltage specification. These features make the proposed voltage multiplier rectifier desirable for high frequency, high efficiency, high output-voltage, and high reliability power applications, such as the sustainable energy source power system or some high voltage medical instrument power conversion applications.
    In addition to operation principle, theoretical analysis, and design considerations, a dual-inductor current-fed converter with Taiwan Tech voltage doubler rectifier and a dual-inductor current-fed boost converter with six-fold Taiwan Tech voltage multiplier rectifier as examples are described in Chapter 2 and Chapter 3, respectively. Three six-fold dual-inductor current-fed converters with a Cockcroft-Walton voltage multiplier rectifier, with a symmetrical Cockcroft-Walton voltage multiplier rectifier, and with a Taiwan Tech voltage multiplier rectifier, have been implemented with same 100 kHz, 24~36V input, 380V/380W output specifications. Also the performance comparisons among these circuits are made.

    中文摘要 I Abstract II Acknowledgement IV Table of Contents VII List of Figures X List of Tables XVII Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Objectives of dissertation 12 1.3 Organization of dissertation 12 Chapter 2 Dual-Inductor Current-Fed Boost converter with Taiwan Tech Voltage Doubler Rectifier (DB-TTVD) 14 2.1 Introduction 14 2.2 Operation Principle 17 2.3 Circuit analysis 22 2.3.1 Voltage gain 22 2.3.2 ZVS operation of switches, Q1, Q2, QC1, and QC2 23 2.3.3 Output capacitor current analysis 24 2.3.4 Output voltage ripple cancellation 28 2.4 Comparisons between DB-TTVD and conventional full-wave voltage doubler rectifier (CVD) 30 2.4.1 Currents of transformer secondary windings 31 2.4.2 Current of output capacitors 33 2.4.3 Output voltage ripple 35 2.5 Hardware implementation 37 2.5.1 Turns-ratio of transformer (N) and duty cycle (D) 37 2.5.2 Leakage inductance (Lr) for ZVS operation 39 2.5.3 Clamping capacitor (CC) for ZVS operation 41 2.5.4 Input inductors (L1 and L2) 42 2.5.5 Output capacitors (CO1 and CO2) 42 2.5.6 Clamping capacitor (C1) 43 2.5.7 Rectifier diodes (D1 and D2) 45 2.5.8 Switches (Q1, Q2, QC1 and QC2) 46 2.6 Experiment results of DB-TTVD 46 2.7 Experiment results comparison between DB-CVD and DB-TTVD 51 2.7.1 Current of transformer secondary windings 52 2.7.2 Output capacitors 52 2.7.3 Output voltage ripple 54 2.7.4 Efficiency 54 2.8 Summary 55 Chapter 3 Taiwan Tech Voltage Multiplier Rectifier 57 3.1 Introduction 57 3.2 Operation principle 61 3.2.1 Output voltage ripple 65 3.3 Characteristic comparison among three voltage multiplier rectifiers 68 3.4 Dual-inductor current-fed boost converter with six-fold Taiwan Tech voltage multiplier rectifier (DB-TTVM-6) 74 3.4.1 Operation principle 78 3.4.2 Experiment Results of DB-TTVM-6 81 3.4.3 Experiment result comparisons among DB-CWVM-6, DB-SVM-6, and DB-TTVM-6 87 3.5 Summary 90 Chapter 4 Conclusions and future research 92 4.1 Conclusions 92 4.2 Future Research 94 Reference 97 Vita 104

    [1] Po-Hsin Tseng, Jiann-Fuh Chen, and Yi-Ping Hsieh, “A novel active clamp high step-up dc-dc converter with coupled-inductor for fuel cell system,” in Future Energy Electronics Conference, 2013, pp. 326-331.
    [2] Shih-Ming Chen, Ke-Ren Hu, Tsorng-Juu Liang, Yi-Hsun Hsieh, and Lung-Sheng Yang, “Implementation of high step-up solar power optimizer for dc micro grid application,” in Applied Power Electronics Conference and Exposition, 2012, pp. 28-32.
    [3] Yi Zhao, Xin Xiang, Chushan Li, Yunjie Gu, Wuhua Li, and Xiangning He, “Single-phase high step-up converter with improved multiplier cell suitable for half-bridge-based PV inverter system,” Power Electronics, IEEE Transactions on, vol. 29, no. 6, pp. 2807-2816, 2014.
    [4] C. P. Basso, Switch-Mode Power Supplies, New York: McGraw-Hill, 2008.
    [5] F. L. Luo and H. Ye, “Positive output cascade boost converters,” Electric Power Applications, IEE Proceedings, vol. 151, no. 5, pp. 590-606, 2004.
    [6] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc-dc PWM converters,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, no. 2, pp. 687-696, 2008.
    [7] Wuhua Li, and Xiangning He, “Review of nonisolated high-step-up dc/dc Converters in Photovoltaic grid-connected applications,” Industrial Electronics, IEEE Transactions on, vol. 58, no. 4, pp. 1239-1250, 2011.
    [8] Yungtaek Jang, and M. M. Jovanovic, “A new family of full-bridge ZVS converters,” Power Electronics, IEEE Transactions on, vol. 19, no. 3, pp. 701-708, 2004.
    [9] P. H. Kuo, T. J. Liang, K. C. Tseng, J. F. Chen, and S. M. Chen, “An isolated high step-up forward/flyback active-clamp converter with output voltage lift,” in Energy Conversion Congress and Exposition, 2010, pp. 542-548.
    [10] Guan-Chyun Hsieh and Tuzng-Hang Yang, “Step-up ZVS full-bridge converter with loss reduction by forward energy-delivered circuit,” in Vehicle Power and Propulsion Conference, 2008, pp. 1-5.
    [11] H. K. Yoon, E. S. Choi, S. K. Han, G. W. Moon, and M. J. Youn, “Zero-voltage and zero-current switching two-transformer full-bridge converter using the output-voltage-doubler,” in Power Electronics and Motion Control Conference, 2006, pp. 1-5.
    [12] Jae-Bum Lee, Jae-Kuk Kim, Jae-Hyun Kim, Cheol-O Yeon, and Gun-Woo Moon, “A new current-fed full-bridge converter for high step-up gain and high efficiency,” in Vehicle Power and Propulsion Conference, 2012, pp. 1232-1237.
    [13] T. Meghdad, M. Jafar, and A. Bijan, “High step-up current-fed ZVS dual half-bridge dc-dc converter for high-voltage applications,” Power Electronics, IET, vol. 8, no. 2, pp. 309-318, 2015.
    [14] Jung-Min Kwon, Eung-Ho Kim, Bong-Hwan Kwon, and Kwang-Hee Nam, “High-efficiency fuel cell power conditioning system with input current ripple reduction,” Industrial Electronics, IEEE Transactions on, vol. 56, no. 3, pp. 826-834, 2009.
    [15] S. J. Jang, Chung-Yuen Won, Byoung-kuk Lee, and Jin Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter,” Energy Conversion, IEEE Transactions on, vol. 22, no. 2, pp. 332-340, 2007.
    [16] Jung-Min Kwon, and Bong-Hwan Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” Power Electronics, IEEE Transactions on, vol. 24, no. 1, pp. 108-115, 2009.
    [17] P. Y. Huang, “A novel voltage doubler rectifier for high output voltage applications.” M. S. thesis, National Taiwan Univeristy Sicence and Technology, Taipei, Taiwan, 2011.
    [18] P. M. Lin and L. O. Chua, “Topological generation and analysis of voltage multiplier circuits,” Circuits and Systems, IEEE Transactions on, vol. 24, no. 10, pp. 517-530, Oct. 1977.
    [19] L. Malesani, and R. Piovan, “Theoretical performance of the capacitor-diode voltage multiplier fed by a current source,” Power Electronics, IEEE Transactions on, vol. 8, no. 2, pp. 147-155, 1993.
    [20] I. C. Kobougias and E. C. Tatakis, “Optimal design of a half-wave Cockroft-Walton voltage multiplier with minimum total capacitance,” in Power Electronics Specialists Conference, 2008, pp. 1104-1109.
    [21] J. Budnick, T. Bertuccio, K. Kirk, M. Sewell, L. Corbin, and G. Brown, “Reliability improvements for Cockroft-Walton high voltage multipliers,” in Nuclear Science Symposium and Medical Imaging Conference, 1991, pp. 974-978 vol.2.
    [22] A. M. R. Amaral and A. J. M. Cardoso, “An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors,” in IECON, 2008, pp. 539-544.
    [23] Nippon Chemi-Con, Aluminum Electrolytic Capacitors Cat. NO. E1001G, issued October 2006.
    [24] C. S. Leu and P. Y. Huang, “Current ripple reduction power conversion circuits,” U.S. Patent 8,259,469, Sep. 2012.
    [25] J. Sun, X. Ding, M. Nakaoka, and H. Takano, “Series resonant ZCS-PFM dc-dc converter with multistage rectified voltage multiplier and dual-mode PFM control scheme for medical-use high-voltage X-ray power generator,” Electric Power Applications, IEE Proceedings, vol. 147, no. 6, pp. 527-534, 2000.
    [26] S. Iqbal, G. K. Singh, and R. Besar, “A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply,” Power Electronics, IEEE Transactions on, vol. 23, no. 2, pp. 1003-1008, 2008.
    [27] H. Zhang, and A. Takaoka, “Efficient compensation method for reducing ripple of Cockcroft–Walton generator in an ultrahigh‐voltage electron microscope,” Review of scientific instruments, vol. 65, no. 10, pp. 3194-3198, 1994.
    [28] J. S. Brugler, “Theoretical performance of voltage multiplier circuits,” Solid-State Circuits, IEEE Journal of, vol. 6, pp. 132-135, 1971.
    [29] S. Iqbal, “A hybrid symmetrical voltage multiplier,” Power Electronics, IEEE Transactions on, vol. 29, no. 1, pp. 6-12, 2014.
    [30] S. Iqbal, R. Besar, and C. Venkataseshiah, “A low ripple voltage multiplier for X-ray power supply,” in Power and Energy Conference, 2008, pp. 1451-1455.
    [31] F. Hwang, S. Ying, and S. H. Jayaram, “Low-ripple compact high-voltage dc power supply,” Industry Applications, IEEE Transactions on, vol. 42, no. 5, pp. 1139-1145, 2006.
    [32] C. S. Leu and P. Y. Huang “Near zero current-ripple inversion or rectification circuits,” U.S. Patent 8,665,616, Mar. 2014.
    [33] M. S. Bhaskar, N. Sreeramula Reddy, R. K. P. Kumar, and Y. B. S. S. Gupta, “A novel high step-up multilevel boost converter using double voltage-lift switched-inductor cell,” in Circuit, Power and Computing Technologies, 2014, pp. 996-1001.
    [34] George C. Chryssis, High-frequency Switching Power Supplies, New York: McGraw Hill, 1995.
    [35] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
    [36] G. Reinhold, K. Truempy, and J. Bill, “The symmetrical cascade rectifier an accelerator power supply in the megavolt and milliampere range,” Nuclear Science, IEEE Transactions on, vol. 12, pp. 288-292, 1965.
    [37] F. Belloni, P. Maranesi, and M. Riva, “Parameters optimization for improved dynamics of voltage multipliers for space,” in Power Electronics Specialists Conference, 2004, pp. 439-443 Vol.1.
    [38] K. S. Tam and E. Bloodworth, “Automated topological generation and analysis of voltage multiplier circuits,” Circuits and Systems, IEEE Transactions on, vol. 37, pp. 432-436, 1990.
    [39] H. Van der Broeck, “Analysis of a current fed voltage multiplier bridge for high voltage applications,” in Power Electronics Specialists Conference, 2002, pp. 1919-1924.
    [40] A. Shenkman, Y. Berkovich, and B. Axelrod, “Novel ac-dc and dc-dc converters with a diode-capacitor multiplier,” Aerospace and Electronic Systems, IEEE Transactions on, vol. 40, pp. 1286-1293, 2004.
    [41] Ju-Won Baek, Myung-Hyo Ryoo, Tae-Jin Kim, Dong-Wook Yoo, and Jong-Soo Kim, “High boost converter using voltage multiplier,” in Industrial Electronics Society, 2005, p. 6 pp.
    [42] M. Prudente, L. L. Pfitscher, and R. Gules, “A boost converter with voltage multiplier cells,” in Power Electronics Specialists Conference, 2005, pp. 2716-2721.
    [43] S. Iqbal, “A three-phase symmetrical multistage voltage multiplier,” Power Electronics Letters, IEEE, vol. 3, pp. 30-33, 2005.
    [44] J. C. Rosas-Caro, J. M. Ramirez, and P. M. Garcia-Vite, “Novel dc-dc multilevel boost converter,” in Power Electronics Specialists Conference, 2008, pp. 2146-2151.
    [45] S. V. Araujo, R. P. T. Bascope, G. V. T. Bascope, and L. Menezes, “Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier,” in Power Electronics Specialists Conference, 2008, pp. 2271-2277.
    [46] L. H. S. C. Barreto, P. Peixoto Praca, D. S. Oliveira, and R. N. A. L. Silva, “High-voltage gain boost converter based on three-state commutation cell for battery charging using PV panels in a single conversion Stage,” Power Electronics, IEEE Transactions on, vol. 29, pp. 150-158, 2014.
    [47] Y. J. A. Alcazar, R. T. Bascope, D. S. de Oliveira, E. H. P. Andrade, and W. G. Cardenas, “High voltage gain boost converter based on three-state switching cell and voltage multipliers,” in Industrial Electronics, 2008, pp. 2346-2352.
    [48] I. C. Kobougias and E. C. Tatakis, “Optimal design of a half wave cockroft-walton voltage multiplier with different capacitances per stage,” in Power Electronics and Motion Control Conference, 2008, pp. 1274-1279.
    [49] T. Filchev, D. Cook, P. Wheeler, A. van den Bossche, J. Clare, and V. Valchev, “High power, high voltage, high frequency transformer / rectifier for HV industrial applications,” in Power Electronics and Motion Control Conference, 2008, pp. 1326-1331.
    [50] M.E. Buechel, “High voltage multipliers in TV receivers,” IEEE Trans. Broadcast and Television Receivers, vol. BTR-16, no. 1, pp. 32-36, Feb. 1970.
    [51] R.L. MaSaitis, A.J. Muller, R.L. Opila, L.A. Psota-Kelty, and S. Daoud, “Characterization and reliability of electrolytic capacitors exposed to halogenated solvents,” Electronic Components and Technology Conference, 1992, pp. 611-616.
    [52] E.E. Smith, “Reliability of tantalum-foil-type electrolytic capacitors,” Proceedings of the IEE - Part B: Electronic and Communication Engineering, vol. 109, no. 22, pp. 543-547, 1962.
    [53] M. Hudis, “Large aluminum electrolytic capacitor constructed with an electrochemical cathode,” APEC’99., vol. 2, no., pp. 699-706 vol. 2, 14-18 Mar. 1999.
    [54] Yaow-Ming Chen, Hsu-Chin Wu, Ming-Wei Chou, and Kung-Yen Lee, “Online failure prediction of the electrolytic capacitor for LC filter of switching-mode power converters,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 400-406, Jan. 2008.
    [55] A.M.R. Amaral and A.J.M. Cardoso, “An automatic technique to obtain the equivalent circuit of aluminum electrolytic capacitors,” IECON2008., pp. 539-544, 10-13 Nov. 2008.
    [56] H.R.E. Larico and I. Barbi, “Double-coupled current-fed push-pull dc/dc converter: analysis and experimentation,” COBEP’09., pp. 305-312, Sept. 27 2009-Oct. 1 2009.
    [57] W.C.P. De Aragao Filho and I. Barbi, “A comparison between two current-fed push-pull dc-dc converters-analysis, design and experimentation,” INTELEC‘96, vol., no., pp. 313-320, Oct. 6-10 1996.
    [58] Li Wuhua, Xiaodong Lv, Yan Deng, Jun Liu, and Xiangning He, “A review of non-isolated high step-up dc/dc converters in renewable energy applications,” APEC 2009., vol., no., pp. 364-369, Feb. 15-19 2009.
    [59] Y. Wang and C. Klumpner, “Optimal design of a dc/dc converter for photovoltaic applications,” IECON 2005., vol., no., pp. 6-10 Nov. 2005.
    [60] Yaow-Ming Chen, Yuan-Chuan Liu, and Feng-Yu Wu, “Multi-input dc/dc converter based on the multiwinding transformer for renewable energy applications,” IEEE Trans. Ind. Applicat., vol. 38, no. 4, pp. 1096- 1104, Jul. /Aug. 2002.
    [61] H. Matsuo, Wenzhong Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the multiple-input dc-dc converter,” IEEE Trans. Power Electron., vol. 51, no. 3, pp. 625-631, June 2004.
    [62] Hanju Cha, Jungwan Choi, and P.N. Enjeti, “A three-phase current-fed dc/dc converter with active clamp for low-dc renewable energy sources,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2784-2793, Nov. 2008.
    [63] U. Bossel, “On the way to a sustainable energy future,” INTELEC’05., pp.659-668, Sept. 2005.
    [64] D. J. Patterson, “Renewable energy engineering — Sustainable energy engineering — An overview,” COBEP’09., vol., no., pp.65-70, Sept. 27 2009-Oct. 1 2009.
    [65] S. R. Bull, “Renewable energy today and tomorrow,” in Proc. IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.

    QR CODE