簡易檢索 / 詳目顯示

研究生: Abegaz Tizazu Andrgie
Abegaz Tizazu Andrgie
論文名稱: Stimuli-Responsive Polymers Based Therapeutic Approaches for Enhanced Anti-Metastasis, Antitumor and Wound Healing
Stimuli-Responsive Polymers Based Therapeutic Approaches for Enhanced Anti-Metastasis, Antitumor and Wound Healing
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 陳建光
Jem-Kun Chen
邱信程
Hsin-Cheng Chiu
何明樺
Ming-Hua Ho
游佳欣
Jiashing Yu
蔡協致
Hsieh-Chih Tsai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 186
中文關鍵詞: 肝素水膠轉移前驅藥物刺激應答熱敏性
外文關鍵詞: heparin, hydrogel, metastasis, prodrugs, stimuli-responsive, thermo-sensitive
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    癌症是一個細胞異常增生且不受控制所衍生之疾病,而對於癌症病患而言有90%的死亡是因癌細胞轉移。另外傷口是由於受傷或是手術,造成組織之結構與功能之破壞。傷口癒合不良與癌症轉移在臨床治療上常導致嚴重後果。也因此經有已有針對上述病因問題所開發出治療方法。為了達到長效之治療目的,設計可控制的藥物釋放載體在治療上是不可或缺的。目前已經有多種生物材料被設計為控制藥物釋放的載體。由於癌症附近的高滲透性,可藉由水膠與奈米粒子作為輸送蛋白質,多肽、藥物小分子和細胞至腫瘤區,高分子奈米顆粒已廣泛研究用於抗腫瘤藥物輸送,而水膠所包覆之藥劑並可以用作長時間持續釋放之載體。 水膠可根據對人體的傳遞途徑而形成巨觀材料或微米及奈米之尺寸粒子。而水膠可透過外科植入、局部或全身注射而被引入體內。手術植入會引起患者不適和與手術相關的風險,而全身性注射可能使藥物載體暴露於免疫系統及降解酶中。為了獲得預期的治療結果並克服上述問題,人們越來越關注於局部水膠遞送系統和奈米藥物載體的應用。本文製備了原位熱敏性聚合物和氧化還原反應奈米粒子前驅藥物,以用於增強抗腫瘤,抗轉移和傷口癒合活性的藥物的傳遞。
    第一項研究中我們使用一非抗凝肝素(heparin)作為前藥,並使用(poly‐(ε‐caprolactone‐co‐lactide) ‐b‐poly (ethylene glycol) ‐b‐poly(ε‐caprolactone‐co‐lactide)高分子水膠包覆藥物,設計了感溫型生物降解水膠,預期透過注射的方式來局部抑制癌細胞擴散。高分子水膠會透過酯化反應和肝素結合,並透過肝素的水解來達到長時間釋放藥物的效果,此高分子水溶液於25℃時會呈溶液狀,並在人體溫度37℃時凝膠。本研究設計了體內與體外實驗來觀察水膠的抗轉移效用,結果顯示,注射此水膠可有效的抑制癌細胞的轉移。第二項研究中,我們開發一款由肝素與聚(N-異丙基丙烯酰胺)(Poly(N-isopropylacrylamide),PNIPAM) 形成共軛結構的聚合物,具有注射後於原位形成凝膠及促進傷口癒合的特性,利用此水膠包覆非類固醇消炎藥布洛芬(ibuprofen),以減輕傷口癒合過程中所產生的疼痛和抑制炎症反應。透過體外實驗證實,由此藥物載體可抑制RAW264.7巨噬細胞株中的促炎介質(NO、PGE2、TNF-α)的產生,來推斷水膠釋放的布洛芬可抑制脂多醣進而抑制炎症,體內實驗則設計控制組及對照組(磷酸鹽緩衝溶液),透過將水膠覆蓋於傷口,並記錄傷口癒合程度等概況,而包覆布洛芬的組別相較於對照組具有更佳的癒合狀況,結果表明,包覆布洛芬的原位注射水膠有望應用於促進傷口癒合的治療。第三項研究中,我們設計並合成了氧化還原應答含雙硫鍵之雙親性肝素-苯丁酸氮芥(chlorambucil)共軛聚合物前藥,以增強抗腫瘤和抗轉移活性。該共軛前藥可自組裝形成球形囊泡,接枝效率為61.33%。細胞活性測試結果表明,該前藥與正常細胞(HaCaT)具有生物相容性,並選擇性殺死腫瘤細胞(HeLa細胞)。證實了前藥對HeLa細胞的攝取與時間成正比。因此,設計的前藥可以是癌細胞中苯丁酸氮芥的傳遞和控制釋放的潛在候選物。


    Abstract
    Cancer is a group of diseases characterized by the uncontrolled growth of abnormal cells. The serious and devastating problem in cancer is metastasis, which accounts for 90% of cancer‐associated death. A wound is a break in the integrity of tissues by injury or operation, which may be associated with disruption of the structure and function. From this view, restores the structural integrity of injured tissues is referred to as wound healing. Both cancer and wound healings are major public issues and clinical burden. Especially, impaired healing wounds and metastasis cancer may cause serious complications and difficult for treatment. Different clinical and research efforts have been made to succeed in a convenient treatment formulation for these kinds of problems. Long-acting, controlled, and pathophysiologic specific drug release formulations are much desired and essential in clinical practice. Various biomaterials have been designed as controlled release drug delivery vehicles. Hydrogels and nanoparticles have received special consideration as sustained-release formulation. Polymeric nanoparticles have been widely investigated as promising antitumor-drug vehicles due to enhanced permeability and retention (EPR) effect of the cancerous environments. As the type of delivery approach, hydrogels can also encapsulate and maintain a sustained release of various therapeutic agents, like drugs, protein, polypeptide, other small molecules, and cells. Hydrogels can be formed as macro, micro, and nano sizes according to the requirements of the delivery route into the human body. Hydrogels can be administered into the body through surgical implantation, local or systemic injection. Surgical implantation causes the patient discomfort and the risks associated with surgery whereas, the systemic injection may expose the drugs and carriers to potentially degradative enzymes that degrade both drugs and carriers. To succeed in the desired therapeutic outcomes and overcome these challenges, there has been increasing attention to the employment of hydrogels for localized delivery systems and nanoparticle prodrugs. In this dissertation, in situ gelling thermo-responsive polymers and redox-sensitive nanoparticle prodrugs were fabricated for the delivery of drugs for enhanced antitumor, anti-metastasis and wound healing activity. In the first work, non‐anticoagulant heparin prodrugs were synthesized for metastasis treatment with a localized treatment system using temperature-sensitive, injectable, and biodegradable (poly‐(ε‐caprolactone‐co‐lactide) ‐b‐poly (ethylene glycol) ‐b‐poly(ε‐caprolactone‐co‐lactide) polymeric hydrogel. The esterification conjugation of heparin and polymers was ensured the sustained release of heparin through hydrolysis and followed by polymeric biodegradation. Below 25 ℃ an aqueous solution of the polymers was existed in the sol state but transformed to gel in human body temperature (37 °C.) that is suitable for injection. The anti‐metastasis effect of the hydrogels is investigated both in vitro and in vivo. The results demonstrated that local administration of injectable heparin‐loaded hydrogels effectively promotes an inhibitory effect on cancer metastasis. In the second study, Heparin-conjugated PNIPAM, an injectable, in situ gel-forming polymer were developed and applied to induce wound healing. The non-steroidal anti-inflammatory drug, ibuprofen was encapsulated into the hydrogel to reduce pain and excessive inflammation during healing. An in vitro assay confirmed that the ibuprofen released from the hydrogel were dramatically reduced lipopolysaccharide-induced inflammation by suppressing the production of the proinflammatory mediators NO, PGE2, and TNF-α in RAW264.7 macrophages. An in vivo wound healing assay was conducted out by applying hydrogels to induced wounds. It was verified that ibuprofen-loaded hydrogel improved healing relative to the control group (phosphate-buffered saline). This study indicates that ibuprofen loaded in an injectable hydrogel is a promising candidate for wound healing therapy. In the third work, redox-responsive disulfide bond containing amphiphilic heparin–chlorambucil conjugated polymeric prodrugs were designed and synthesized to enhance antitumor and anti-metastasis activity. The conjugated prodrug can be self-assembled to form spherical vesicles with 61.33% chlorambucil grafting efficiency. The cell viability test results showed that the prodrug was biocompatible with normal cells (HaCaT) and selectively killed tumor cells (HeLa cells). It was confirmed that cellular uptake of prodrugs against HeLa cells increases with time. Therefore, the designed prodrugs can be a potential candidate for the delivery and controlled release of chlorambucil in cancer cells.

    Table of Contents 摘要 i Abstract iii Acknowledgment vi Table of Contents vii List of Figures xiii List of Tables xix List of Abbreviations xx 1. CHAPTER ONE 1 1.1. Introduction 1 1.2. Objectives 4 1.2.1. General Objective 4 1.2.2. Specific Objectives 4 2. CHAPTER TWO 5 2.1. Literature Review 5 2.1.1. Overview of Cancer and Cancer Metastasis 5 2.1.2. Wound Healing: An Overview 6 2.1.3. Hydrogels 8 2.1.4. Classifications of Hydrogels 9 2.1.5. Stimuli-Responsive Hydrogels 12 2.1.6. Temperature-Responsive 14 2.1.7. Types of Thermo-sensitive Hydrogels 16 2.1.7.1. Polysaccharide Based Thermo-Sensitive Hydrogels 17 2.1.7.2. Heparin and Heparin Derivatives 19 2.1.7.3. Polypeptide-Based Hydrogels 21 2.1.7.4. Poly (Ethylene Glycol) (PEG)-Polyesters 22 2.1.7.5. N-Substituted Acrylamide Based Polymers 24 2.1.8. Redox Sensitive Polymers and Nanoparticle Prodrugs 25 2.1.9. Biomedical Applications of Thermo-Responsive Hydrogels 26 2.1.9.1. Therapeutic Agent Delivery 27 2.1.9.2. Cell Therapy and Tissues Regeneration 29 2.1.9.3. Postoperative Anti-Adhesive 31 3. CHAPTER THREE 33 3.1. Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermo-Responsive Hydrogels for Metastasis Treatment 33 3.2. Experimental Section 37 3.2.1. Materials 37 3.2.2. Synthesis of triBlock Copolymer 38 3.2.3. Preparation of Chemically Modified Heparin Derivative 39 3.2.4. Synthesis of Hep Conjugated triBLOCK Polymer 40 3.2.5. Characterizations of triBLOCK Copolymer and Nac-hep-triBLOCK 41 3.2.6. Sol-gel Phase Transition Diagram and Rheological Behavior 41 3.2.7. Biodegradation of triBLOCK Polymer 42 3.2.8. Release Test of Heparin from Hydrogel 42 3.2.9. Cytotoxicity Test 43 3.2.10. In vitro Cell Migration Test 44 3.2.11. In vivo Anti-Metastasis Model 44 3.3. Result and Discussion 45 3.3.1. Synthesis of triBLOCK Copolymers 45 3.3.2. Preparation of Heparin Derivatives 48 3.3.3. Synthesis of Heparin-Conjugated triBLOCK Polymer 50 3.3.4. Sol-gel Transition Phase Diagram and Rheological Properties 53 3.3.5. Biodegradation of triBLOCK 56 3.3.6. Release Test of Heparin from Hydrogel 57 3.3.7. In vitro Cytotoxicity Test of Nac-hep-triBLOCK 58 3.3.8. Cell Culture Wound Closure Assay 59 3.3.9. In vivo Anti-Metastasis Effects 61 3.4. Conclusion 64 4. CHAPTER FOUR 65 4.1. Ibuprofen-loaded injectable hydrogel for inhibiting excessive inflammation and promoting wound healing 65 4.2. Experimental Section 69 4.2.1. Materials 69 4.2.2. NIPAM-NH2 Synthesis 69 4.2.3. Heparin-PNIPAM Synthesis 70 4.2.4. Characterization of PNIPAM and Hep-PNIPAM Copolymers 71 4.2.5. Grafting Efficiency and Ratio 71 4.2.6. Hydration Ratio 72 4.2.7. Hep-PNIPAM Copolymer Morphology 72 4.2.8. Lower Critical Solution Temperature (LCST) and Rheological Behavior 72 4.2.9. In Vitro Cytotoxicity Test (MTT Assay) 73 4.2.10. Ibuprofen Encapsulation and In Vitro Drug Release 74 4.2.11. Anti-Inflammation Assay for Ibuprofen-Loaded Hydrogel 74 4.2.12. Animal Experiment 75 4.3. Results and Discussion 77 4.3.1. Synthesis of Hep-PNIPAM Copolymers 77 4.3.2. Grafting Efficiency and Grafting and Hydration Ratios 80 4.3.3. Lower Critical Solution Temperature (LCST) and Rheological Behavior 82 4.3.4. In Vitro Cytotoxicity Test (MTT Assay) 83 4.3.5. Ibuprofen Encapsulation and In Vitro Drug Release 85 4.3.6. Effects of IB-Hep-PNIPAM on NO, PGE2, and TNF-Α Production in LPS-Stimulated RAW264.7 Cells 86 4.3.7. In Vivo Wound Healing Effects and Healing Rate 88 4.3.8. In Vivo Anti-Inflammation Assay on Ibuprofen-Loaded Hydrogel 90 4.4. Conclusions 92 5. CHAPTER FIVE 93 5.1. Redox-Responsive Heparin–chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity 93 5.2. Experimental Section 96 5.2.1. Materials 96 5.2.2. Synthesis of Heparin-Chlorambucil (Hep-Chl) 96 5.2.3. Heparin-Chlorbumcil (Hep- Chl) Prodrug Self-Assembled Nanoparticle Preparation ………………………………………………………………………………………97 5.2.4. Characterization of Heparin-Chlorambucil (Hep-Chl) Prodrug 97 5.2.5. In Vitro Chlorambucil Release Study 98 5.2.6. Cell viability study 98 5.2.7. Examination of In Vitro Cellular Uptake Of Hep-Chl Nanoparticles 99 5.3. Results and Discussion 100 5.3.1. Synthesis of Heparin-Chlorambucil (Hep-Chl) 100 5.3.2. Formation of Self-Assembled Prodrugs 105 5.3.3. In Vitro Drug Release Studies 108 5.3.4. In Vitro Cytotoxicity Study 110 5.3.5. In Vitro Cellular Uptake of Hep-Chl Nanoparticles 111 5.4. Conclusions 113 6. CHAPTER SIX 114 6.1. General Summary 114 6.2. Recommendation 116 7. REFERENCES 118

    7. REFERENCES
    1. Konstantopoulos, K.; Thomas, S. N., Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 2009, 11, 177-202.
    2. Frykberg, R. G.; Banks, J., Challenges in the treatment of chronic wounds. Advances in wound care 2015, 4 (9), 560-582.
    3. Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K., Drug delivery systems: An updated review. International journal of pharmaceutical investigation 2012, 2 (1), 2.
    4. Bassyouni, F.; ElHalwany, N.; Rehim, M. A.; Neyfeh, M., Advances and new technologies applied in controlled drug delivery system. Research on Chemical Intermediates 2015, 41 (4), 2165-2200.
    5. Rezaie, H. R.; Esnaashary, M.; Öchsner, A., The History of Drug Delivery Systems. In A Review of Biomaterials and Their Applications in Drug Delivery, Springer: 2018; pp 1-8.
    6. Abu-Thabit, N. Y.; Makhlouf, A. S. H., Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1, Elsevier: 2018; pp 3-41.
    7. Idorn, T.; Knop, F. K.; Jørgensen, M. B.; Christensen, M.; Holst, J. J.; Hornum, M.; Feldt-Rasmussen, B., Elimination and degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with end-stage renal disease. The Journal of Clinical Endocrinology & Metabolism 2014, 99 (7), 2457-2466.
    8. Yun, Y. H.; Lee, B. K.; Park, K., Controlled drug delivery: historical perspective for the next generation. Journal of Controlled Release 2015, 219, 2-7.
    119
    9. Zhong, H.; Chan, G.; Hu, Y.; Hu, H.; Ouyang, D., A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 2018, 10 (4), 263.
    10. Bui, D. T.; Nicolas, J.; Maksimenko, A.; Desmaële, D.; Couvreur, P., Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chemical communications 2014, 50 (40), 5336-5338.
    11. Mekuria, S. L.; Debele, T. A.; Tsai, H.-C., PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. Rsc Advances 2016, 6 (68), 63761-63772.
    12. Xia, Y.; He, H.; Liu, X.; Hu, D.; Yin, L.; Lu, Y.; Xu, W., Redox-responsive, core-crosslinked degradable micelles for controlled drug release. Polymer Chemistry 2016, 7 (41), 6330-6339.
    13. Vahed, S. Z.; Salehi, R.; Davaran, S.; Sharifi, S., Liposome-based drug co-delivery systems in cancer cells. Materials Science and Engineering: C 2017, 71, 1327-1341.
    14. He, C.; Kim, S. W.; Lee, D. S., In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of controlled release 2008, 127 (3), 189-207.
    15. Li, J.; Mooney, D. J., Designing hydrogels for controlled drug delivery. Nature Reviews Materials 2016, 1 (12), 16071.
    16. Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S., Nano based drug delivery systems: Recent developments and future prospects. Journal of nanobiotechnology 2018, 16 (1), 71.
    17. Singh, R.; Lillard Jr, J. W., Nanoparticle-based targeted drug delivery. Experimental and molecular pathology 2009, 86 (3), 215-223.
    120
    18. Wang, Y.-F.; Liu, L.; Xue, X.; Liang, X.-J., Nanoparticle-based drug delivery systems: what can they really do in vivo? F1000Research 2017, 6.
    19. Hu, X.; Liu, R.; Zhang, D.; Zhang, J.; Li, Z.; Luan, Y., Rational design of an amphiphilic chlorambucil prodrug realizing self-assembled micelles for efficient anticancer therapy. ACS Biomaterials Science & Engineering 2018, 4 (3), 973-980.
    20. Ma, Y.; Mou, Q.; Sun, M.; Yu, C.; Li, J.; Huang, X.; Zhu, X.; Yan, D.; Shen, J., Cancer theranostic nanoparticles self-assembled from amphiphilic small molecules with equilibrium shift-induced renal clearance. Theranostics 2016, 6 (10), 1703.
    21. Birhan, Y. S.; Hailemeskel, B. Z.; Mekonnen, T. W.; Hanurry, E. Y.; Darge, H. F.; Andrgie, A. T.; Chou, H.-Y.; Lai, J.-Y.; Hsiue, G.-H.; Tsai, H.-C., Fabrication of redox-responsive Bi (mPEG-PLGA)-Se2 micelles for doxorubicin delivery. International journal of pharmaceutics 2019, 567, 118486.
    22. Hailemeskel, B. Z.; Hsu, W.-H.; Addisu, K. D.; Andrgie, A. T.; Chou, H.-Y.; Lai, J.-Y.; Tsai, H.-C., Diselenide linkage containing triblock copolymer nanoparticles based on Bi (methoxyl poly (ethylene glycol))-poly (ε-carprolactone): Selective intracellular drug delivery in cancer cells. Materials Science and Engineering: C 2019, 109803.
    23. Thakur, S.; Thakur, V. K.; Arotiba, O. A., History, Classification, Properties and Application of Hydrogels: An Overview. In Hydrogels, Springer: 2018; pp 29-50.
    24. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research 2015, 6 (2), 105-121.
    25. Bhatnagar, D.; Simon, M.; Rafailovich, M. H., Hydrogels for Regenerative Medicine. In Recent Advances in Biopolymers, InTech: 2016, DOI: 10.5772/62044.
    121
    26. Fan, D.-y.; Liu, Z.; Tian, Y., Injectable Hydrogels for Localized Cancer Therapy. Frontiers in chemistry 2019, 7, 675.
    27. Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A. N.; Dehghani, F., Biomedical Applications of Biodegradable Polyesters. Polymers 2016, 8 (1), 32.
    28. Sim, H. J.; Thambi, T.; Lee, D. S., Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J. Mat. Chem. B 2015, 3 (45), 8892-8901.
    29. Ma, H. C.; He, C. L.; Cheng, Y. L.; Yang, Z. M.; Zang, J. T.; Liu, J. G.; Chen, X. S., Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. Acs Applied Materials & Interfaces 2015, 7 (49), 27040-27048.
    30. Chen, Y. P.; Luan, J. B.; Shen, W. J.; Lei, K. W.; Yu, L.; Ding, J. D., Injectable and Thermosensitive Hydrogel Containing Liraglutide as a Long-Acting Antidiabetic System. Acs Applied Materials & Interfaces 2016, 8 (45), 30703-30713.
    31. Nakai, T.; Hirakura, T.; Sakurai, Y.; Shimoboji, T.; Ishigai, M.; Akiyoshi, K., Injectable Hydrogel for Sustained Protein Release by Salt-Induced Association of Hyaluronic Acid Nanogel. Macromol. Biosci. 2012, 12 (4), 475-483.
    32. Darge, H. F.; Andrgie, A. T.; Hanurry, E. Y.; Birhan, Y. S.; Mekonnen, T. W.; Chou, H.-Y.; Hsu, W.-H.; Lai, J.-Y.; Lin, S.-Y.; Tsai, H.-C., Localized Controlled Release of Bevacizumab and Doxorubicin by Thermo-Sensitive Hydrogel for Normalization of Tumor Vasculature and to Enhance the Efficacy of Chemotherapy. International journal of pharmaceutics 2019, 118799.
    122
    33. Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J. W.; Ding, J. D., Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011, 32 (21), 4725-4736.
    34. Chen, Y.-Y.; Wu, H.-C.; Sun, J.-S.; Dong, G.-C.; Wang, T.-W., Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Langmuir 2013, 29 (11), 3721-3729.
    35. He, M.; Sui, J.; Chen, Y.; Bian, S.; Cui, Y.; Zhou, C.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X., Localized multidrug co-delivery by injectable self-crosslinking hydrogel for synergistic combinational chemotherapy. J. Mat. Chem. B 2017, 5 (25), 4852-4862.
    36. Cancer, I. A. f. R. o., Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018, press release,No. 263
    37. Street, W., Cancer Facts & Figures 2019. American Cancer Society: Atlanta, GA, USA 2019.
    38. Sloan, F. A.; Gelband, H., Cancer causes and risk factors and the elements of cancer control. In Cancer Control Opportunities in Low-and Middle-Income Countries, National Academies Press (US): 2007.
    39. Abbas, Z.; Rehman, S., An Overview of Cancer Treatment Modalities. Neoplasm 2018,19, 3898-3914; doi:10.3390/ijms19123898.
    40. Kaliberov, S. A.; Buchsbaum, D. J., Cancer treatment with gene therapy and radiation therapy. In Advances in cancer research, Elsevier: 2012; Vol. 115, pp 221-263.
    41. Cross, D.; Burmester, J. K., Gene therapy for cancer treatment: past, present and future. Clinical medicine & research 2006, 4 (3), 218-227.
    123
    42. Jeffe, D. B.; Pérez, M.; Cole, E. F.; Liu, Y.; Schootman, M., The effects of surgery type and chemotherapy on early-stage breast cancer patients’ quality of life over 2-year follow-up. Annals of surgical oncology 2016, 23 (3), 735-743.
    43. Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L., Current challenges in cancer treatment. Clinical therapeutics 2016, 38 (7), 1551-1566.
    44. Massagué, J.; Obenauf, A. C., Metastatic colonization by circulating tumour cells. Nature 2016, 529 (7586), 298.
    45. van Zijl, F.; Krupitza, G.; Mikulits, W., Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 2011, 728 (1-2), 23-34.
    46. Fidler, I. J., Timeline - The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 2003, 3 (6), 453-458.
    47. Ho, H.-H.; Chang, C.-S.; Ho, W.-C.; Liao, S.-Y.; Wu, C.-H.; Wang, C.-J., Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food and Chemical Toxicology 2010, 48 (8), 2508-2516.
    48. He, Q.; Guo, S.; Qian, Z.; Chen, X., Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev. 2015, 44 (17), 6258-6286.
    49. Leoni, G.; Neumann, P.; Sumagin, R.; Denning, T.; Nusrat, A., Wound repair: role of immune–epithelial interactions. Mucosal immunology 2015, 8 (5), 959-968.
    50. Gonzalez, A. C. d. O.; Costa, T. F.; Andrade, Z. d. A.; Medrado, A. R. A. P., Wound healing-A literature review. Anais brasileiros de dermatologia 2016, 91 (5), 614-620.
    124
    51. Greaves, N. S.; Ashcroft, K. J.; Baguneid, M.; Bayat, A., Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of dermatological science 2013, 72 (3), 206-217.
    52. Servold, S., Growth factor impact on wound healing. Clinics in podiatric medicine and surgery 1991, 8 (4), 937-953.
    53. Steenfos, H. H., Growth factors and wound healing. Scandinavian journal of plastic and reconstructive surgery and hand surgery 1994, 28 (2), 95-105.
    54. Menke, N. B.; Ward, K. R.; Witten, T. M.; Bonchev, D. G.; Diegelmann, R. F., Impaired wound healing. Clinics in dermatology 2007, 25 (1), 19-25.
    55. Guo, S. a.; DiPietro, L. A., Factors affecting wound healing. Journal of dental research 2010, 89 (3), 219-229.
    56. Hess, C. T., Checklist for factors affecting wound healing. Advances in skin & wound care 2011, 24 (4), 192.
    57. RAF, S. A. C., Mechanisms of disease: cutaneous wound healing. The New England Journal of Medicine 1999, 341, 738746.
    58. Bahram, M.; Mohseni, N.; Moghtader, M., An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels, IntechOpen: 2016, DOI: 10.5772/64301.
    59. Wang, N.; Li, Y.; Zhang, Y.; Liao, Y.; Liu, W., High-strength photoresponsive hydrogels enable surface-mediated gene delivery and light-induced reversible cell adhesion/detachment. Langmuir 2014, 30 (39), 11823-11832.
    125
    60. Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research 2017, 8 (3), 217-233.
    61. Wichterle, O.; Lim, D., Hydrophilic gels for biological use. Nature 1960, 185 (4706), 117.
    62. Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F., Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials 2013, 23 (6), 660-672.
    63. Jung, Y. S.; Park, W.; Park, H.; Lee, D. K.; Na, K., Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydrate Polymers 2017, 156, 403-408.
    64. Phan, V. H. G.; Thambi, T.; Gil, M. S.; Lee, D. S., Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. Polymer 2017, 109, 38-48.
    65. Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A., Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science & Engineering R-Reports 2015, 93, 1-49.
    66. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews 2001, 53 (3), 321-339.
    67. Lim, H. L.; Hwang, Y.; Kar, M.; Varghese, S., Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2014, 2 (5), 603-618.
    68. Nielsen, J. E.; Zhu, K.; Sande, S. A.; Kováčik, L.; Cmarko, D.; Knudsen, K. D.; Nyström, B., Structural and Rheological Properties of Temperature-Responsive Amphiphilic
    126
    Triblock Copolymers in Aqueous Media. The Journal of Physical Chemistry B 2017,121( 18), 4885-4899.
    69. Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol–gel reversible hydrogels. Advanced drug delivery reviews 2012, 64, 154-162.
    70. Darge, H. F.; Andrgie, A. T.; Tsai, H.-C.; Lai, J.-Y., Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. International journal of biological macromolecules 2019, 133, 545–563.
    71. Ma, X.; Sun, X.; Chen, J.; Lei, Y., Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications. Applied biochemistry and biotechnology 2017, 183 (2), 461-487.
    72. Khansari, M. M.; Sorokina, L. V.; Mukherjee, P.; Mukhtar, F.; Shirdar, M. R.; Shahidi, M.; Shokuhfar, T., Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation. JOM 2017, 69 (8), 1340-1347.
    73. Li, Q.; Niu, Y.; Xing, P.; Wang, C., Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chinese medicine 2018, 13 (1), 7.
    74. Kwiecień, I.; Kwiecień, M., Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels 2018, 4 (2), 47.
    75. Garg, T.; Bilandi, A.; Kapoor, B.; Kumar, S.; Joshi, R., Scaffold: Tissue engineering and regenerative medicine. Int Res J Pharm 2011, 2 (12), 37-42.
    76. Lau, H. K.; Kiick, K. L., Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 2014, 16 (1), 28-42.
    77. Palmese, L. L.; Thapa, R. K.; Sullivan, M. O.; Kiick, K. L., Hybrid hydrogels for biomedical applications. Current Opinion in Chemical Engineering 2019, 24,143–157.
    127
    78. Mishra, S.; Rani, P.; Sen, G.; Dey, K. P., Preparation, Properties and Application of Hydrogels: A Review. In Hydrogels, Springer: 2018; pp 145-173.
    79. Parhi, R., Cross-Linked Hydrogel for Pharmaceutical Applications: A Review. Advanced pharmaceutical bulletin 2017, 7 (4), 515-530.
    80. Ranganathan, N.; Joseph Bensingh, R.; Abdul Kader, M.; Nayak, S. K., Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. Cellulose-Based Superabsorbent Hydrogels 2018, 1-25.
    81. Bhattarai, N.; Gunn, J.; Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews 2010, 62 (1), 83-99.
    82. Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M., Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C 2015, 57, 414-433.
    83. Garg, S.; Garg, A., Hydrogel: Classification, Properties, Preparation and Technical Features. Asian Journal of Biomaterial Research 2016, 2 (6), 163-170.
    84. Liu, F.; Seuring, J.; Agarwal, S., A Non‐ionic Thermophilic Hydrogel with Positive Thermosensitivity in Water and Electrolyte Solution. Macromolecular Chemistry and Physics 2014, 215 (15), 1466-1472.
    85. Zhang, S.; Alvarez, D. J.; Sofroniew, M. V.; Deming, T. J., Design and synthesis of nonionic copolypeptide hydrogels with reversible thermoresponsive and tunable physical properties. Biomacromolecules 2015, 16 (4), 1331-1340.
    86. Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials 2019, 29 (1), 1806220.
    128
    87. Ozmen, M. M.; Okay, O., Superfast responsive ionic hydrogels with controllable pore size. Polymer 2005, 46 (19), 8119-8127.
    88. Ikeda, S.; Kumagai, H.; Sakiyama, T.; Chu, C.-H.; Nakamura, K., Method for analyzing pH-sensitive swelling of amphoteric hydrogels: application to a polyelectrolyte complex gel prepared from xanthan and chitosan. Bioscience, biotechnology, and biochemistry 1995, 59 (8), 1422-1427.
    89. Jain, P.; Hung, H.-C.; Li, B.; Ma, J.; Dong, D.; Lin, X.; Sinclair, A.; Zhang, P.; O’Kelly, M. B.; Niu, L., Zwitterionic hydrogels based on a degradable disulfide carboxybetaine cross-linker. Langmuir 2018, 35 (5), 1864-1871.
    90. Chen, Y.; Wang, W.; Wu, D.; Nagao, M.; Hall, D. G.; Thundat, T.; Narain, R., Injectable self-healing zwitterionic hydrogels based on dynamic benzoxaborole–sugar interactions with tunable mechanical properties. Biomacromolecules 2018, 19 (2), 596-605.
    91. Zhang, T.; Silverstein, M. S., Highly porous, emulsion-templated, zwitterionic hydrogels: amplified and accelerated uptakes with enhanced environmental sensitivity. Polymer Chemistry 2018, 9 (25), 3479-3487.
    92. Chatterjee, S.; Hui, C.-L., Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019, 24 (14), 2547.
    93. Hoffman, A. S., Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Advanced drug delivery reviews 2013, 65 (1), 10-16.
    94. Gil, E. S.; Hudson, S. M., Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science 2004, 29 (12), 1173-1222.
    129
    95. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of controlled release 2008, 126 (3), 187-204.
    96. Liang, X.; Ding, H.; Wang, Q.; Sun, G., Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. European Polymer Journal 2019, 109278.
    97. Mohamed, M. A.; Fallahi, A.; El-Sokkary, A. M.; Salehi, S.; Akl, M. A.; Jafari, A.; Tamayol, A.; Fenniri, H.; Khademhosseini, A.; Andreadis, S. T., Stimuli-Responsive Hydrogels for Manipulation of Cell Microenvironment: From Chemistry to Biofabrication Technology. Progress in Polymer Science 2019, 101147.
    98. Shim, W. S.; Kim, J. H.; Kim, K.; Kim, Y. S.; Park, R. W.; Kim, I. S.; Kwon, I. C.; Lee, D. S., pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. International Journal of Pharmaceutics 2007, 331 (1), 11-18.
    99. Fan, Y.; Zhou, W.; Yasin, A.; Li, H.; Yang, H., Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 2015, 11 (21), 4218-4225.
    100. Cheng, X.; Jin, Y.; Sun, T.; Qi, R.; Li, H.; Fan, W., An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloids and Surfaces B: Biointerfaces 2016, 141, 44-52.
    101. Chandrawati, R., Enzyme-responsive polymer hydrogels for therapeutic delivery. Experimental Biology and Medicine 2016, 241 (9), 972-979.
    102. Liu, R.; Shi, Z.; Sun, J.; Li, Z., Enzyme responsive supramolecular hydrogels assembled from nonionic peptide amphiphiles. Science China Chemistry 2018, 61 (10), 1314-1319.
    130
    103. Chung, Y.-M.; Simmons, K. L.; Gutowska, A.; Jeong, B., Sol− Gel Transition Temperature of PLGA-g-PEG Aqueous Solutions. Biomacromolecules 2002, 3 (3), 511-516.
    104. Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y., Bio-responsive smart polymers and biomedical applications. Journal of Physics: Materials 2019, 2 (3), 032004.
    105. Hibbins, A.; Kumar, P.; Choonara, Y.; Kondiah, P.; Marimuthu, T.; du Toit, L.; Pillay, V., Design of a versatile pH-responsive hydrogel for potential oral delivery of gastric-sensitive bioactives. Polymers 2017, 9 (10), 474.
    106. Tang, Z. L.; Akiyama, Y.; Okano, T., Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers 2012, 4 (3), 1478-1498.
    107. Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B., Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41 (14), 4860-4883.
    108. Thambi, T.; Li, Y.; Lee, D. S., Injectable hydrogels for sustained release of therapeutic agents. Journal of Controlled Release 2017, 267, 57-66.
    109. Moon, H. J.; Park, M. H.; Joo, M. K.; Jeong, B., Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41 (14), 4860-4883.
    110. Andrgie, A. T.; Mekuria, S. L.; Addisu, K. D.; Hailemeskel, B. Z.; Hsu, W. H.; Tsai, H. C.; Lai, J. Y., Non‐Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti‐Metastasis Therapy. Macromol. Biosci. 2019, 1800409.
    111. Qureshi, D.; Nayak, S. K.; Maji, S.; Anis, A.; Kim, D.; Pal, K., Environment Sensitive Hydrogels for Drug Delivery Applications. European Polymer Journal 2019, 109220.
    131
    112. Petit, A.; Muller, B.; Bruin, P.; Meyboom, R.; Piest, M.; Kroon-Batenburg, L. M. J.; de Leede, L. G. J.; Hennink, W. E.; Vermonden, T., Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Acta Biomaterialia 2012, 8 (12), 4260-4267.
    113. Petit, A.; Müller, B.; Meijboom, R.; Bruin, P.; van de Manakker, F.; Versluijs-Helder, M.; de Leede, L. G.; Doornbos, A.; Landin, M.; Hennink, W. E., Effect of polymer composition on rheological and degradation properties of temperature-responsive gelling systems composed of acyl-capped PCLA-PEG-PCLA. Biomacromolecules 2013, 14 (9), 3172-3182.
    114. Yu, L.; Ci, T.; Zhou, S.; Zeng, W.; Ding, J., The thermogelling PLGA–PEG–PLGA block copolymer as a sustained release matrix of doxorubicin. Biomater. Sci. 2013, 1 (4), 411-420.
    115. Schild, H. G.; Tirrell, D. A., Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. Journal of Physical Chemistry 1990, 94 (10), 4352-4356.
    116. Ishida, K.; Uno, T.; Itoh, T.; Kubo, M., Synthesis and property of temperature-responsive hydrogel with movable cross-linking points. Macromolecules 2012, 45 (15), 6136-6142.
    117. Lemanowicz, M., Thermosensitive aggregation under conditions of repeated heating–cooling cycles. International Journal of Mineral Processing 2015, 144, 26-32.
    118. Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K., Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. asian journal of pharmaceutical sciences 2015, 10 (2), 99-107.
    132
    119. Shimada, N.; Ino, H.; Maie, K.; Nakayama, M.; Kano, A.; Maruyama, A., Ureido-derivatized polymers based on both poly (allylurea) and poly (L-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromolecules 2011, 12 (10), 3418-3422.
    120. Shimada, N.; Nakayama, M.; Kano, A.; Maruyama, A., Design of UCST polymers for chilling capture of proteins. Biomacromolecules 2013, 14 (5), 1452-1457.
    121. Casado, N.; Hernandez, G.; Sardon, H.; Mecerreyes, D., Current trends in redox polymers for energy and medicine. Progress in Polymer Science 2016, 52, 107-135.
    122. James, H. P.; John, R.; Alex, A.; Anoop, K., Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharmaceutica Sinica B 2014, 4 (2), 120-127.
    123. Huang, H.; Qi, X.; Chen, Y.; Wu, Z., Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharmaceutical Journal 2019, 27, 990–999.
    124. Boffito, M.; Gioffredi, E.; Chiono, V.; Calzone, S.; Ranzato, E.; Martinotti, S.; Ciardelli, G., Novel polyurethane‐based thermosensitive hydrogels as drug release and tissue engineering platforms: design and in vitro characterization. Polymer International 2016, 65 (7), 756-769.
    125. Liow, S. S.; Dou, Q.; Kai, D.; Karim, A. A.; Zhang, K.; Xu, F.; Loh, X. J., Thermogels: In situ gelling biomaterial. ACS Biomaterials Science & Engineering 2016, 2 (3), 295-316.
    126. Hou, L.; Chen, Q.; An, Z.; Wu, P., Understanding the thermosensitivity of POEGA-based star polymers: LCST-type transition in water vs. UCST-type transition in ethanol. Soft Matter 2016, 12 (8), 2473-2480.
    133
    127. Sun, W.; An, Z.; Wu, P., UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly (N-acryloylglycinamide-co-diacetone acrylamide). Macromolecules 2017, 50 (5), 2175-2182.
    128. Guo, H.; Sanson, N.; Marcellan, A.; Hourdet, D., Thermoresponsive toughening in LCST-type hydrogels: comparison between semi-interpenetrated and grafted networks. Macromolecules 2016, 49 (24), 9568-9577.
    129. Weng, L.; Xie, J., Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr. Pharm. Design 2015, 21 (15), 1944-1959.
    130. Dastidar, D. G.; Chakrabarti, G., Thermoresponsive Drug Delivery Systems, Characterization and Application. In Applications of Targeted Nano Drugs and Delivery Systems, Elsevier: 2019; pp 133-155.
    131. Altomare, L.; Bonetti, L.; Campiglio, C. E.; De Nardo, L.; Draghi, L.; Tana, F.; Farè, S., Biopolymer-based strategies in the design of smart medical devices and artificial organs. The International journal of artificial organs 2018, 41 (6), 337-359.
    132. Shimada, N.; Kidoaki, S.; Maruyama, A., Smart hydrogels exhibiting UCST-type volume changes under physiologically relevant conditions. RSC Advances 2014, 4 (94), 52346-52348.
    133. Caffall, K. H.; Mohnen, D., The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate research 2009, 344 (14), 1879-1900.
    134. Kobayashi, S., New developments of polysaccharide synthesis via enzymatic polymerization. Proceedings of the Japan Academy, Series B 2007, 83 (8), 215-247.
    135. Xie, L.; Shen, M.; Hong, Y.; Ye, H.; Huang, L.; Xie, J., Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydrate Polymers 2019, 115436.
    134
    136. Dave, P. N.; Gor, A., Natural Polysaccharide-Based Hydrogels and Nanomaterials: Recent Trends and Their Applications. In Handbook of Nanomaterials for Industrial Applications, Elsevier: 2018; pp 36-66.
    137. Camponeschi, F.; Atrei, A.; Rocchigiani, G.; Mencuccini, L.; Uva, M.; Barbucci, R., New formulations of polysaccharide-based hydrogels for drug release and tissue engineering. Gels 2015, 1 (1), 3-23.
    138. Deng, S.; Li, X.; Yang, W.; He, K.; Ye, X., Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release. Journal of Biomaterials Science, Polymer Edition 2018, 29 (13), 1643-1655.
    139. Chang, C.; Zhang, L., Cellulose-based hydrogels: Present status and application prospects. Carbohydrate polymers 2011, 84 (1), 40-53.
    140. Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V.; Lupuleasa, D., Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. Emerging Concepts in Analysis and Applications of Hydrogels 2016, 176, DOI: 10.5772/63953.
    141. Nasatto, P. L.; Pignon, F.; Silveira, J. L.; Duarte, M. E. R.; Noseda, M. D.; Rinaudo, M., Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 2015, 7 (5), 777-803.
    142. Contessi, N.; Altomare, L.; Filipponi, A.; Farè, S., Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Materials Letters 2017, 207, 157-160.
    143. Park, H.; Kim, M. H.; Im, D. S.; Jin, S. Y.; Song, M. W.; Ohm, S. Y.; Park, W. H. In Effect of calcium phosphate precursor salt on gelation temperature of methylcellulose, 2016
    135
    International Conference on Applied Mathematics, Simulation and Modelling, Atlantis Press: 2016.
    144. Zubik, K.; Singhsa, P.; Wang, Y.; Manuspiya, H.; Narain, R., Thermo-responsive poly (N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 2017, 9 (4), 119.
    145. Zou, W.; Chen, Y.; Zhang, X.; Li, J.; Sun, L.; Gui, Z.; Du, B.; Chen, S., Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydrate polymers 2018, 202, 246-257.
    146. Ghasemi Tahrir, F.; Ganji, F.; Mani, A. R.; Khodaverdi, E., In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Deliv. 2016, 23 (3), 1028-1036.
    147. Choi, C.; Nam, J.-P.; Nah, J.-W., Application of chitosan and chitosan derivatives as biomaterials. Journal of Industrial and Engineering Chemistry 2016, 33, 1-10.
    148. Wei, C.-Z.; Hou, C.-L.; Gu, Q.-S.; Jiang, L.-X.; Zhu, B.; Sheng, A.-L., A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions' prevention. Biomaterials 2009, 30 (29), 5534-5540.
    149. Dang, Q.; Liu, K.; Zhang, Z.; Liu, C.; Liu, X.; Xin, Y.; Cheng, X.; Xu, T.; Cha, D.; Fan, B., Fabrication and evaluation of thermosensitive chitosan/collagen/α, β-glycerophosphate hydrogels for tissue regeneration. Carbohydrate polymers 2017, 167, 145-157.
    150. Chang, Y.; Xiao, L.; Tang, Q., Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. Journal of applied polymer science 2009, 113 (1), 400-407.
    136
    151. Supper, S.; Anton, N.; Seidel, N.; Riemenschnitter, M.; Curdy, C.; Vandamme, T., Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert opinion on drug delivery 2014, 11 (2), 249-267.
    152. Jiang, Y.; Meng, X.; Wu, Z.; Qi, X., Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydrate polymers 2016, 144, 245-253.
    153. Chen, D.; Guo, P.; Chen, S.; Cao, Y.; Ji, W.; Lei, X.; Liu, L.; Zhao, P.; Wang, R.; Qi, C., Properties of xyloglucan hydrogel as the biomedical sustained-release carriers. Journal of Materials Science: Materials in Medicine 2012, 23 (4), 955-962.
    154. Ajovalasit, A.; Sabatino, M. A.; Todaro, S.; Alessi, S.; Giacomazza, D.; Picone, P.; Di Carlo, M.; Dispenza, C., Xyloglucan-based hydrogel films for wound dressing: structure-property relationships. Carbohydrate polymers 2018, 179, 262-272.
    155. Mahajan, H. S.; Tyagi, V.; Lohiya, G.; Nerkar, P., Thermally reversible xyloglucan gels as vehicles for nasal drug delivery. Drug Deliv. 2012, 19 (5), 270-276.
    156. Zeng, Q.; Han, Y.; Li, H.; Chang, J., Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. J. Mat. Chem. B 2015, 3 (45), 8856-8864.
    157. Cook, B. W. In Anticoagulation management, Seminars in interventional radiology, Thieme Medical Publishers: 2010; p 360.
    158. Holmer, E.; Söderberg, K.; Bergqvist, D.; Lindahl, U., Heparin and its low molecular weight derivatives: anticoagulant and antithrombotic properties. Pathophysiology of Haemostasis and Thrombosis 1986, 16 (Suppl. 2), 1-7.
    137
    159. Ludwig, R. J.; Boehme, B.; Podda, M.; Henschler, R.; Jager, E.; Tandi, C.; Boehncke, W. H.; Zollner, T. M.; Kaufmann, R.; Gille, J., Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Research 2004, 64 (8), 2743-2750.
    160. Wu, J.; Zhu, J.; He, C.; Xiao, Z.; Ye, J.; Li, Y.; Chen, A.; Zhang, H.; Li, X.; Lin, L., Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency. ACS applied materials & interfaces 2016, 8 (29), 18710-18721.
    161. Seto, S. P.; Miller, T.; Temenoff, J. S., Effect of Selective Heparin Desulfation on Preservation of Bone Morphogenetic Protein-2 Bioactivity after Thermal Stress. Bioconjugate Chemistry 2015, 26 (2), 286-293.
    162. Casu, B.; Vlodavsky, I.; Sanderson, R. D., Non-anticoagulant heparins and inhibition of cancer. Pathophysiology of haemostasis and thrombosis 2007, 36 (3-4), 195-203.
    163. Freudenberg, U.; Zieris, A.; Chwalek, K.; Tsurkan, M. V.; Maitz, M. F.; Atallah, P.; Levental, K. R.; Eming, S. A.; Werner, C., Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. Journal of Controlled Release 2015, 220, 79-88.
    164. Li, N.-N.; Zheng, B.-N.; Lin, J.-T.; Zhang, L.-M., New heparin–indomethacin conjugate with an ester linkage: synthesis, self aggregation and drug delivery behavior. Materials Science and Engineering: C 2014, 34, 229-235.
    165. Goh, M.; Hwang, Y.; Tae, G., Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing. Carbohydrate Polymers 2016, 147, 251-260.
    166. He, C.; Ji, H.; Qian, Y.; Wang, Q.; Liu, X.; Zhao, W.; Zhao, C., Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J. Mat. Chem. B 2019, 7 (8), 1186-1208.
    138
    167. Altunbas, A.; Pochan, D. J., Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. In Peptide-Based Materials, Springer: 2011; pp 135-167.
    168. Li, J.; Xing, R.; Bai, S.; Yan, X., Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft matter 2019, 15 (8), 1704-1715.
    169. Jonker, A. M.; Löwik, D. W.; van Hest, J. C., Peptide-and protein-based hydrogels. Chemistry of Materials 2012, 24 (5), 759-773.
    170. Li, Y.; Wang, F.; Cui, H., Peptide‐based supramolecular hydrogels for delivery of biologics. Bioengineering & translational medicine 2016, 1 (3), 306-322.
    171. Rivas, M.; del Valle, L. J.; Alemán, C.; Puiggalí, J., Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019, 5 (1), 14.
    172. Cheng, Y.; He, C.; Ding, J.; Xiao, C.; Zhuang, X.; Chen, X., Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials 2013, 34 (38), 10338-10347.
    173. LeSavage, B. L.; Suhar, N. A.; Madl, C. M.; Heilshorn, S. C., Production of Elastin-like Protein Hydrogels for Encapsulation and Immunostaining of Cells in 3D. JoVE (Journal of Visualized Experiments) 2018, (135), e57739.
    174. Byju, A. G.; Kulkarni, A. In Mechanics of gelatin and elastin based hydrogels as tissue engineered constructs, ICF13, 2013, DOI: 10.3389/fendo.2014.00086.
    175. Kutikov, A. B.; Song, J., Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS biomaterials science & engineering 2015, 1 (7), 463-480.
    176. Gong, C.; Qian, Z.; Liu, C.; Huang, M.; Gu, Y.; Wen, Y.; Kan, B.; Wang, K.; Dai, M.; Li, X., A thermosensitive hydrogel based on biodegradable amphiphilic poly (ethylene
    139
    glycol)–polycaprolactone–poly (ethylene glycol) block copolymers. Smart materials and structures 2007, 16 (3), 927.
    177. Sandker, M. J.; Petit, A.; Redout, E. M.; Siebelt, M.; Muller, B.; Bruin, P.; Meyboom, R.; Vermonden, T.; Hennink, W. E.; Weinans, H., In situ forming acyl-capped PCLA-PEG-PCLA triblock copolymer based hydrogels. Biomaterials 2013, 34 (32), 8002-8011.
    178. Yu, L.; Chang, G.; Zhang, H.; Ding, J., Temperature‐induced spontaneous sol–gel transitions of poly (D, L‐lactic acid‐co‐glycolic acid)‐b‐poly (ethylene glycol)‐b‐poly (D, L‐lactic acid‐co‐glycolic acid) triblock copolymers and their end‐capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6), 1122-1133.
    179. Chen, Y.; Li, Y.; Shen, W.; Li, K.; Yu, L.; Chen, Q.; Ding, J., Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Scientific reports 2016, 6, 31593.
    180. Shi, K.; Wang, Y.-L.; Qu, Y.; Liao, J.-F.; Chu, B.-Y.; Zhang, H.-P.; Luo, F.; Qian, Z.-Y., Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo. Scientific reports 2016, 6, 19077.
    181. Ci, T.; Chen, L.; Yu, L.; Ding, J., Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Scientific reports 2014, 4, 5473.
    182. Jiang, Y.; Yan, C.; Shi, D.; Liu, Z.; Yang, M., Enhanced Rheological Properties of PLLA with a Purpose-Designed PDLA-b-PEG-b-PDLA Triblock Copolymer and the Application in the Film Blowing Process to Acquire Biodegradable PLLA Films. ACS omega 2019, 4 (8), 13295-13302.
    140
    183. Mishra, G. P.; Tamboli, V.; Mitra, A. K., Effect of hydrophobic and hydrophilic additives on sol–gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel. Colloid and polymer science 2011, 289 (14), 1553.
    184. Chen, C.-H.; Chen, S.-H.; Mao, S.-H.; Tsai, M.-J.; Chou, P.-Y.; Liao, C.-H.; Chen, J.-P., Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydrate polymers 2017, 173, 721-731.
    185. Park, K., Controlled drug delivery systems: past forward and future back. Journal of Controlled Release 2014, 190, 3-8.
    186. Tibbitt, M. W.; Dahlman, J. E.; Langer, R., Emerging frontiers in drug delivery. Journal of the American Chemical Society 2016, 138 (3), 704-717.
    187. Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H. M., Redox-responsive nano-carriers as tumor-targeted drug delivery systems. European journal of medicinal chemistry 2018, 157, 705-715.
    188. Kumar, B.; Priyadarshi, R.; Deeba, F.; Kulshreshtha, A.; Kumar, A.; Agrawal, G.; Gopinath, P.; Negi, Y. S., Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Materials Science and Engineering: C 2019, 110356.
    189. Li, R.; Peng, F.; Cai, J.; Yang, D.; Zhang, P., Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian Journal of Pharmaceutical Sciences 2019.
    190. Huang, P.; Wang, D.; Su, Y.; Huang, W.; Zhou, Y.; Cui, D.; Zhu, X.; Yan, D., Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug–drug conjugate for cancer therapy. Journal of the American Chemical Society 2014, 136 (33), 11748-11756.
    141
    191. Yang, H.; Wang, N.; Mo, L.; Wu, M.; Yang, R.; Xu, X.; Huang, Y.; Lin, J.; Zhang, L.-M.; Jiang, X., Reduction sensitive hyaluronan-SS-poly (ε-caprolactone) block copolymers as theranostic nanocarriers for tumor diagnosis and treatment. Materials Science and Engineering: C 2019, 98, 9-18.
    192. Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C. G.; Meier, W., Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012, 7 (1), 9.
    193. Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Sun, J.; Wang, H.; Weir, M. D.; Reynolds, M. A., Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone research 2018, 6 (1), 1-15.
    194. Choi, B. G.; Park, M. H.; Cho, S.-H.; Joo, M. K.; Oh, H. J.; Kim, E. H.; Park, K.; Han, D. K.; Jeong, B., In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials 2010, 31 (35), 9266-9272.
    195. Kim, Y.-M.; Park, H. H.; Hwang, D. H.; Cui, Y.; Lee, E. M.; Yahn, S.; Lee, J. K.; Song, S.-C.; Kim, B. G., An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nature communications 2017, 8 (1), 533.
    196. Konishi, M.; Tabata, Y.; Kariya, M.; Hosseinkhani, H.; Suzuki, A.; Fukuhara, K.; Mandai, M.; Takakura, K.; Fujii, S., In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. Journal of Controlled Release 2005, 103 (1), 7-19.
    197. Bromberg, L. E.; Ron, E. S., Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Advanced Drug Delivery Reviews 1998, 31 (3), 197-221.
    142
    198. Petit, A.; Redout, E. M.; van de Lest, C. H.; de Grauw, J. C.; Muller, B.; Meyboom, R.; van Midwoud, P.; Vermonden, T.; Hennink, W. E.; van Weeren, P. R., Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials 2015, 53, 426-436.
    199. Petit, A.; Sandker, M.; Muller, B.; Meyboom, R.; van Midwoud, P.; Bruin, P.; Redout, E. M.; Versluijs-Helder, M.; van der Lest, C. H. A.; Buwalda, S. J.; de Leede, L. G. J.; Vermonden, T.; Kok, R. J.; Weinans, H.; Hennink, W. E., Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials 2014, 35 (27), 7919-7928.
    200. Wei, L.; Chen, J.; Zhao, S.; Ding, J.; Chen, X., Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta biomaterialia 2017, 58, 44-53.
    201. Censi, R.; Vermonden, T.; van Steenbergen, M. J.; Deschout, H.; Braeckmans, K.; De Smedt, S. C.; van Nostrum, C. F.; Di Martino, P.; Hennink, W., Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery. Journal of controlled release 2009, 140 (3), 230-236.
    202. El-Mesallamy, H. O.; Diab, M. R.; Hamdy, N. M.; Dardir, S. M., Cell-Based Regenerative Strategies for Treatment of Diabetic Skin Wounds, a Comparative Study between Human Umbilical Cord Blood-Mononuclear Cells and Calves' Blood Haemodialysate. Plos One 2014, 9 (3).
    203. Nakamura, Y.; Ishikawa, H.; Kawai, K.; Tabata, Y.; Suzuki, S., Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials 2013, 34 (37), 9393-9400.
    143
    204. Davey, G. C.; Patil, S. B.; O'Loughlin, A.; O'Brien, T., Mesenchymal stem cell-based treatment for microvascular and secondary complications of Diabetes mellitus. Frontiers in Endocrinology 2014, 5,1664-2392.
    205. Amer, M. H.; Rose, F. R.; Shakesheff, K. M.; Modo, M.; White, L. J., Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regenerative medicine 2017, 2 (1), 23.
    206. Srijaya, T. C.; Ramasamy, T. S.; Kasim, N. H. A., Advancing stem cell therapy from bench to bedside: lessons from drug therapies. Journal of translational medicine 2014, 12 (1), 243.
    207. Tong, X.; Yang, F., Recent progress in developing injectable matrices for enhancing cell delivery and tissue regeneration. Advanced healthcare materials 2018, 7 (7), 1701065.
    208. Seliktar, D., Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336 (6085), 1124-1128.
    209. Prieto, E. M.; Page, J. M.; Harmata, A. J.; Guelcher, S. A., Injectable foams for regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (2), 136-154.
    210. Liang, K.; Bae, K. H.; Kurisawa, M., Recent advances in the design of injectable hydrogels for stem cell-based therapy. J. Mat. Chem. B 2019, 7, 3775--3791.
    211. Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M.; Hoemann, C.; Leroux, J.; Atkinson, B.; Binette, F.; Selmani, A., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000, 21 (21), 2155-2161.
    144
    212. Ruel-Gariepy, E.; Leclair, G.; Hildgen, P.; Gupta, A.; Leroux, J.-C., Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release 2002, 82 (2-3), 373-383.
    213. Lee, P. Y.; Cobain, E.; Huard, J.; Huang, L., Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Molecular therapy 2007, 15 (6), 1189-1194.
    214. Alpay, Z.; Saed, G. M.; Diamond, M. P. In Postoperative adhesions: from formation to prevention, Seminars in reproductive Medicine, © Thieme Medical Publishers: 2008; pp 313-321.
    215. Arung, W.; Meurisse, M.; Detry, O., Pathophysiology and prevention of postoperative peritoneal adhesions. World journal of gastroenterology: WJG 2011, 17 (41), 4545.
    216. Recanati, M.-A.; Kramer, K.; Rambhatla, A.; Berman, J. M.; Huttemann, M., Prevention of Postoperative Adhesion Formation Using Noninvasive Technology [38F]. Obstetrics & Gynecology 2019, 133, 72S.
    217. Wei, G.; Wu, Y.; Gao, Q.; Zhou, C.; Wang, K.; Shen, C.; Wang, G.; Wang, K.; Sun, X.; Li, X., Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxidative medicine and cellular longevity 2017, ID 1740317.
    218. Jacquet, P.; Sugarbaker, P., Abdominal adhesions causing intestinal obstruction following cytoreductive surgery and early postoperative intraperitoneal chemotherapy. Acta Chirurgica Austriaca 1995, 27 (2), 92-95.
    219. Bang, S.; Lee, E.; Ko, Y.-G.; Kim, W. I.; Kwon, O. H., Injectable pullulan hydrogel for the prevention of postoperative tissue adhesion. International journal of biological macromolecules 2016, 87, 155-162.
    145
    220. Zhang, E.; Li, J.; Zhou, Y.; Che, P.; Ren, B.; Qin, Z.; Ma, L.; Cui, J.; Sun, H.; Yao, F., Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta biomaterialia 2017, 55, 420-433.
    221. Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C., Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014, 35 (12), 3903-3917.
    222. Bacac, M.; Stamenkovic, I., Metastatic cancer cell. Annu Rev Pathol 2008, 3, 221-47.
    223. Gupta, G. P.; Massague, J., Cancer metastasis: Building a framework. Cell 2006, 127 (4), 679-695.
    224. Seyfried, T. N.; Huysentruyt, L. C., On the origin of cancer metastasis. Crit Rev Oncog 2013, 18 (1-2), 43-73.
    225. Zetter, B. R., Angiogenesis and tumor metastasis. Annual review of medicine 1998, 49 (1), 407-424.
    226. Karaman, S.; Detmar, M., Mechanisms of lymphatic metastasis. The Journal of clinical investigation 2014, 124 (3), 922.
    227. Senapati, S.; Singh, R. K.; Batra, S. K., Tumor microenvironment: blood vascular system in cancer metastasis. Systems Biology of Cancer 2015, 14, 309-322.
    228. Valastyan, S.; Weinberg, R. A., Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147 (2), 275-92.
    229. Chambers, A. F.; Groom, A. C.; MacDonald, I. C., Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002, 2 (8), 563-72.
    230. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 2002, 29 (6), 15-18.
    146
    231. Thejass, P.; Kuttan, G., Antimetastatic activity of sulforaphane. Life Sciences 2006, 78 (26), 3043-3050.
    232. Weber, G. F., Why does cancer therapy lack effective anti-metastasis drugs? Cancer letters 2013, 328 (2), 207-211.
    233. Norouzi, M.; Nazari, B.; Miller, D. W., Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug discovery today 2016, 21 (11), 1835-1849.
    234. Mei, L.; Liu, Y. Y.; Zhang, H. J.; Zhang, Z. R.; Gao, H. L.; He, Q., Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug. Acs Applied Materials & Interfaces 2016, 8 (15), 9577-9589.
    235. Chen, A.; He, H.; Ma, G.; Li, Y.; Jiang, S.; Xuan, X.; Song, Y.; Zhang, C.; Xiao, J.; Xu, Y., Biodegradable copolypeptide hydrogel prodrug accelerates dermal wound regeneration by enhanced angiogenesis and epithelialization. RSC Advances 2018, 8 (19), 10620-10626.
    236. Shen, W.; Chen, X.; Luan, J.; Wang, D.; Yu, L.; Ding, J., Sustained Codelivery of Cisplatin and Paclitaxel via an Injectable Prodrug Hydrogel for Ovarian Cancer Treatment. ACS applied materials & interfaces 2017, 9 (46), 40031-40046.
    237. Guo, D.-D.; Hong, S.-H.; Jiang, H.-L.; Kim, J.-H.; Minai-Tehrani, A.; Kim, J.-E.; Shin, J.-Y.; Jiang, T.; Kim, Y.-K.; Choi, Y.-J., Synergistic effects of Akt1 shRNA and paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel on breast cancer. Biomaterials 2012, 33 (7), 2272-2281.
    238. Ta, H. T.; Dass, C. R.; Larson, I.; Choong, P. F.; Dunstan, D. E., A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials 2009, 30 (27), 4815-4823.
    147
    239. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A., Hydrogels in regenerative medicine. Adv. Mater. 2009, 21 (32‐33), 3307-3329.
    240. Kopecek, J., Hydrogel biomaterials: A smart future? Biomaterials 2007, 28 (34), 5185-5192.
    241. Chai, Q.; Jiao, Y.; Yu, X., Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6.
    242. Park, S. H.; Choi, B. G.; Joo, M. K.; Han, D. K.; Sohn, Y. S.; Jeong, B., Temperature-sensitive poly (caprolactone-co-trimethylene carbonate)− poly (ethylene glycol)− poly (caprolactone-co-trimethylene carbonate) as in situ gel-forming biomaterial. Macromolecules 2008, 41 (17), 6486-6492.
    243. Phan, V. H. G.; Lee, E.; Maeng, J. H.; Thambi, T.; Kim, B. S.; Lee, D.; Lee, D. S., Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. Rsc Advances 2016, 6 (47), 41644-41655.
    244. Shim, W. S.; Kim, S. W.; Lee, D. S., Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 2006, 7 (6), 1935-1941.
    245. Rabenstein, D. L., Heparin and heparan sulfate: structure and function. Natural product reports 2002, 19 (3), 312-331.
    246. Niers, T. M. H.; Klerk, C. P. W.; DiNisio, M.; Van Noorden, C. J. F.; Buller, H. R.; Reitsma, P. H.; Richel, D. J., Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Critical Reviews in Oncology Hematology 2007, 61 (3), 195-207.
    247. Borsig, L., Antimetastatic activities of modified heparins: selectin inhibition by heparin attenuates metastasis. Semin Thromb Hemost 2007, 33 (5), 540-6.
    148
    248. Sudha, T.; Phillips, P.; Kanaan, C.; Linhardt, R. J.; Borsig, L.; Mousa, S. A., Inhibitory effect of non-anticoagulant heparin (S-NACH) on pancreatic cancer cell adhesion and metastasis in human umbilical cord vessel segment and in mouse model. Clinical & Experimental Metastasis 2012, 29 (5), 431-439.
    249. Alyahya, R.; Sudha, T.; Racz, M.; Stain, S. C.; Mousa, S. A., Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. International Journal of Oncology 2015, 46 (3), 1225-1231.
    250. Jin, J.-f.; Zhu, L.-l.; Chen, M.; Xu, H.-m.; Wang, H.-f.; Feng, X.-q.; Zhu, X.-p.; Zhou, Q., The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient preference and adherence 2015, 9, 923.
    251. Liu, X.-Y.; Zhang, C.-C.; Xu, W.-L.; Ouyang, C.-x., Controlled release of heparin from blended polyurethane and silk fibroin film. Materials Letters 2009, 63 (2), 263-265.
    252. Su, Y.; Li, X.; Liu, Y.; Su, Q.; Qiang, M. L. W.; Mo, X., Encapsulation and controlled release of heparin from electrospun poly (l-lactide-co-ε-caprolactone) nanofibers. Journal of Biomaterials Science, Polymer Edition 2011, 22 (1-3), 165-177.
    253. Addisu, K. D.; Hailemeskel, B. Z.; Mekuria, S. L.; Andrgie, A. T.; Lin, Y.-C.; Tsai, H.-C., Bioinspired, Manganese-Chelated Alginate-Poly (Dopamine) Nanomaterials for Efficient In Vivo T1‐Weighted Magnetic Resonance Imaging (MRI). ACS applied materials & interfaces 2018, 10, 6, 5147-5160.
    254. Debele, T. A.; Mekuria, S. L.; Tsai, H.-C., Synthesis and characterization of redox-sensitive heparin-β-sitosterol micelles: Their application as carriers for the pharmaceutical
    149
    agent, doxorubicin, and investigation of their antimetastatic activities in vitro. Materials Science and Engineering: C 2017, 75, 1326-1338.
    255. Justus, C. R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L. V., In vitro cell migration and invasion assays. Journal of visualized experiments: JoVE 2014, (88).
    256. Yang, Y.; He, L.; Liu, Y.; Xia, S.; Fang, A.; Xie, Y.; Gan, L.; He, Z.; Tan, X.; Jiang, C., Promising nanocarriers for PEDF gene targeting delivery to cervical cancer cells mediated by the over-expressing FRα. Scientific reports 2016, 6, 32427.
    257. Gengenbacher, N.; Singhal, M.; Augustin, H. G., Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 2017, 17 (12), 751.
    258. Bougherara, H.; Bouaziz, O., Effects of the anaesthetic/tranquillizer treatments (ketamine, ketamine+ acepromazine, zoletil) on selected plasma biochemical parameters in laboratory rats. Eur J Exp Biol 2014, 3, 1-5.
    259. Gan, T.; Wang, Y.; Zhao, M.; Wu, J.; Yang, J.; Peng, S., 5-(Bis (3-(2-hydroxyethyl)-1H-indol-2-yl) methyl)-2-hydroxybenzoic acid (BHIMHA): showing a strategy of designing drug to block lung metastasis of tumors. Drug design, development and therapy 2016, 10, 711.
    260. Kricheldorf, H. R.; Bornhorst, K.; Hachmann-Thiessen, H., Bismuth (III) n-hexanoate and tin (II) 2-ethylhexanoate initiated copolymerizations of ε-caprolactone and l-lactide. Macromolecules 2005, 38 (12), 5017-5024.
    261. Li, Y.; Luo, J. Y.; Cui, H. F.; Zheng, L.; Du, S. S., Study on anti-metastasis of heparin derivatives as ligand antagonist of p-selectin. Biomedicine & Pharmacotherapy 2010, 64 (10), 654-658.
    150
    262. Singh, N. K.; Nguyen, Q. V.; Kim, B. S.; Lee, D. S., Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel. Nanoscale 2015, 7 (7), 3043-3054.
    263. Huynh, C. T.; Nguyen, M. K.; Lee, D. S., Dually cationic and anionic pH/temperature-sensitive injectable hydrogels and potential application as a protein carrier. Chemical Communications 2012, 48 (89), 10951-10953.
    264. Fan, M.; Ma, Y.; Mao, J.; Zhang, Z.; Tan, H., Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta biomaterialia 2015, 20, 60-68.
    265. Kang, W.; Bi, B.; Zhuo, R.; Jiang, X., Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior. Carbohydrate polymers 2017, 160, 18-25.
    266. Chen, Z.; He, T.; Zhao, K.; Xing, C., Anti-metastatic activity of fangchinoline in human gastric cancer AGS cells. Oncology Letters 2017, 13 (2), 655-660.
    267. Zhang, J.; Shen, Y.; Liu, J.; Wei, D., Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochemical pharmacology 2005, 69 (3), 407-414.
    268. Wang, P. H.; Huang, B. S.; Horng, H. C.; Yeh, C. C.; Chen, Y. J., Wound healing. Journal of the Chinese Medical Association 2018, 81 (2), 94-101.
    269. Martin, C.; Low, W. L.; Amin, M. C. I. M.; Radecka, I.; Raj, P.; Kenward, K., Current trends in the development of wound dressings, biomaterials and devices. Pharmaceutical patent analyst 2013, 2 (3), 341-359.
    151
    270. Gupta, A.; Kowalczuk, M.; Heaselgrave, W.; Britland, S. T.; Martin, C.; Radecka, I., The production and application of hydrogels for wound management: A review. European Polymer Journal 2019, 111, 134-151.
    271. Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A., Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. International journal of pharmaceutics 2019, 559, 23-36.
    272. Barrientos, S.; Stojadinovic, O.; Golinko, M. S.; Brem, H.; Tomic‐Canic, M., Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16 (5), 585-601.
    273. Werner, S.; Grose, R., Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83 (3), 835-870.
    274. Røine, E.; Bjørk, I.; Øyen, O. In Targeting risk factors for impaired wound healing and wound complications after kidney transplantation, Transplantation proceedings, Elsevier: 2010; pp 2542-2546.
    275. Yuan, Z. M.; Zhao, J. W.; Zhu, W. K.; Yang, Z. L.; Li, B.; Yang, H. L.; Zheng, Q.; Cui, W. G., Ibuprofen-loaded electrospun fibrous scaffold doped with sodium bicarbonate for responsively inhibiting inflammation and promoting muscle wound healing in vivo. Biomater. Sci. 2014, 2 (4), 502-511.
    276. Woo, K. Y., Exploring the effects of pain and stress on wound healing. Advances in skin & wound care 2012, 25 (1), 38-44.
    277. Serena, T. E.; Yaakov, R. A.; Aslam, S.; Aslam, R. S., Preventing, minimizing, and managing pain in patients with chronic wounds: challenges and solutions. Chronic Wound Care Management and Research 2016, 3, 85.
    152
    278. Dinarello, C. A., Proinflammatory cytokines. Chest 2000, 118 (2), 503-508.
    279. Morgado, P. I.; Miguel, S. P.; Correia, I. J.; Aguiar-Ricardo, A., Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydrate polymers 2017, 159, 136-145.
    280. Sreij, R.; Prévost, S.; Dargel, C.; Dattani, R.; Hertle, Y.; Wrede, O.; Hellweg, T., Interaction of the Saponin Aescin with Ibuprofen in DMPC Model Membranes. Molecular pharmaceutics 2018, 15 (10), 4446-4461.
    281. Wyss-Coray, T.; Mucke, L., Ibuprofen, inflammation and Alzheimer disease. Nature medicine 2000, 6 (9), 973.
    282. Moreno, M. M.; Garidel, P.; Suwalsky, M.; Howe, J.; Brandenburg, K., The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: a physico-chemical study with lecithin phospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009, 1788 (6), 1296-1303.
    283. Vane, J. R.; Botting, R. M., Mechanism of action of nonsteroidal anti-inflammatory drugs. The American journal of medicine 1998, 104 (3S1), 2S-8S.
    284. Bushra, R.; Aslam, N., An overview of clinical pharmacology of ibuprofen. Oman Medical Journal 2010, 25 (3), 155.
    285. Khalifa, N.; El-Husseini, T.; Morrah, A.; Mostafa, E.; Hamoud, H., Use of ibuprofen sustained release for treating osteoarthritic pain: findings from 15 general medical practices in Egypt. Open access rheumatology: research and reviews 2014, 6, 49.
    286. Bian, Z.; Tang, J.; Hu, J.; Li, J.; Xu, S.; Liu, H., Controlled-release of ibuprofen on multilayer mesoporous vesicle. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 436, 1021-1026.
    153
    287. Jin, S. G.; Yousaf, A. M.; Kim, K. S.; Kim, D. W.; Kim, D. S.; Kim, J. K.; Yong, C. S.; Youn, Y. S.; Kim, J. O.; Choi, H.-G., Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. International journal of pharmaceutics 2016, 501 (1-2), 160-166.
    288. Murray, R. Z.; West, Z. E.; Cowin, A. J.; Farrugia, B. L., Development and use of biomaterials as wound healing therapies. Burns & trauma 2019, 7 (1), 2.
    289. Ninan, N.; Forget, A.; Shastri, V. P.; Voelcker, N. H.; Blencowe, A., Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS applied materials & interfaces 2016, 8 (42), 28511-28521.
    290. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J., A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC advances 2018, 8 (14), 7533-7549.
    291. Uzunalli, G.; Mammadov, R.; Yesildal, F.; Alhan, D.; Ozturk, S.; Ozgurtas, T.; Guler, M. O.; Tekinay, A. B., Angiogenic heparin-mimetic peptide nanofiber gel improves regenerative healing of acute wounds. ACS Biomaterials Science & Engineering 2016, 3 (7), 1296-1303.
    292. Roberts, J. J.; Farrugia, B. L.; Green, R. A.; Rnjak-Kovacina, J.; Martens, P. J., In situ formation of poly (vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor. Journal of tissue engineering 2016, 7, 2041731416677132.
    293. Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X., A multifunctional in situ–forming hydrogel for wound healing. Wound Repair Regen. 2012, 20 (6), 904-910.
    154
    294. Hoque, J.; Prakash, R. G.; Paramanandham, K.; Shome, B. R.; Haldar, J., Biocompatible injectable hydrogel with potent wound healing and antibacterial properties. Molecular pharmaceutics 2017, 14 (4), 1218-1230.
    295. Mi, L.; Xue, H.; Li, Y.; Jiang, S., A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester. Advanced Functional Materials 2011, 21 (21), 4028-4034.
    296. Haq, M. A.; Su, Y.; Wang, D., Mechanical properties of PNIPAM based hydrogels: A review. Materials Science and Engineering: C 2017, 70, 842-855.
    297. Alexander, A.; Khan, J.; Saraf, S.; Saraf, S., Polyethylene glycol (PEG)–Poly (N-isopropylacrylamide)(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88 (3), 575-585.
    298. Chen, J. P.; Cheng, T. H., Thermo‐responsive chitosan‐graft‐poly (N‐isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol. Biosci. 2006, 6 (12), 1026-1039.
    299. Ohya, S.; Nakayama, Y.; Matsuda, T., In vivo evaluation of poly (N-isopropylacrylamide)(PNIPAM)-grafted gelatin as an in situ-formable scaffold. Journal of Artificial Organs 2004, 7 (4), 181-186.
    300. Antoniraj, M. G.; Kumar, C. S.; Kandasamy, R., Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid and Polymer Science 2016, 294 (3), 527-535.
    155
    301. Li, H.; Williams, G. R.; Wu, J.; Lv, Y.; Sun, X.; Wu, H.; Zhu, L.-M., Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. International journal of pharmaceutics 2017, 517 (1-2), 135-147.
    302. Lee, E.; Kim, D.; Kim, H.; Yoon, J., Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles. Scientific reports 2015, 5, 15124.
    303. Lee, E.; Kim, D.; Yang, S. Y.; Oh, J.-W.; Yoon, J., Photo-crosslinkable comb-type copolymers bearing a benzophenone moiety for the enhanced swelling kinetics of hydrogels. Polymer Chemistry 2017, 8 (44), 6786-6794.
    304. Muramatsu, K.; Ide, M.; Miyawaki, F., Biological evaluation of tissue-engineered cartilage using thermoresponsive poly (N-isopropylacrylamide)-grafted hyaluronan. Journal of Biomaterials and Nanobiotechnology 2012, 3 (1), 1.
    305. Chen, J.-P.; Cheng, T.-H., Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer 2009, 50 (1), 107-116.
    306. Chen, J.-P.; Leu, Y.-L.; Fang, C.-L.; Chen, C.-H.; Fang, J.-Y., Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin. Journal of pharmaceutical sciences 2011, 100 (2), 655-666.
    307. Addisu, K. D.; Hailemeskel, B. Z.; Mekuria, S. L.; Andrgie, A. T.; Lin, Y.-C.; Tsai, H.-C., Bioinspired, Manganese-Chelated Alginate–Polydopamine Nanomaterials for Efficient in Vivo T 1-Weighted Magnetic Resonance Imaging. ACS applied materials & interfaces 2018, 10 (6), 5147-5160.
    156
    308. Nguyen, V.-L.; Truong, C.-T.; Nguyen, B. C. Q.; Van Vo, T.-N.; Dao, T.-T.; Nguyen, V.-D.; Trinh, D.-T. T.; Huynh, H. K.; Bui, C.-B., Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn. PloS one 2017, 12 (10), e0185674.
    309. Gupta, N. R.; Ghute, P. P.; Badiger, M. V., Synthesis and characterization of thermo-sensitive graft copolymer of carboxymethyl guar and poly (N-isopropylacrylamide). Carbohydrate polymers 2011, 83 (1), 74-80.
    310. Qi, M.; Li, G.; Yu, N.; Meng, Y.; Liu, X., Synthesis of thermo-sensitive polyelectrolyte complex nanoparticles from CS-g-PNIPAM and SA-g-PNIPAM for controlled drug release. Macromolecular Research 2014, 22 (9), 1004-1011.
    311. Liu, K.; Pan, P.; Bao, Y., Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly (vinyl chloride)-g-poly (N-isopropylacrylamide) amphiphilic copolymer. RSC Advances 2015, 5 (115), 94582-94590.
    312. Cuomo, F.; Cofelice, M.; Lopez, F., Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 2019, 11 (2), 259.
    313. Pramod, K.; Shanavas, S.; Baby, J. N., Rheological profiling of a hydrogel drug delivery vehicle. Journal of Chemical and Pharmaceutical Research 2015, 7 (7), 818-825.
    314. Tie, L.; Yu, M.; Li, X.; Liu, W.; Zhang, B.; Chang, Z.; Zheng, Y., Research on polymer solution rheology in polymer flooding for Qikou reservoirs in a Bohai Bay oilfield. Journal of Petroleum Exploration and Production Technology 2019, 9 (1), 703-715.
    315. Redpath, M.; Marques, C. M. G.; Dibden, C.; Waddon, A.; Lalla, R.; MacNeil, S., Ibuprofen and hydrogel-released ibuprofen in the reduction of inflammation-induced migration in melanoma cells. British Journal of Dermatology 2009, 161 (1), 25-33.
    157
    316. Hwang, J.-H.; Kim, K.-J.; Ryu, S.-J.; Lee, B.-Y., Caffeine prevents LPS-induced inflammatory responses in RAW264. 7 cells and zebrafish. Chemico-biological interactions 2016, 248, 1-7.
    317. Cao, S.-y.; Wang, W.; Nan, F.-f.; Liu, Y.-n.; Wei, S.-y.; Li, F.-f.; Chen, L., Asiatic acid inhibits LPS-induced inflammatory response in endometrial epithelial cells. Microbial pathogenesis 2018, 116, 195-199.
    318. Liao, W.; He, X.; Yi, Z.; Xiang, W.; Ding, Y., Chelidonine suppresses LPS-Induced production of inflammatory mediators through the inhibitory of the TLR4/NF-κB signaling pathway in RAW264. 7 macrophages. Biomedicine & Pharmacotherapy 2018, 107, 1151-1159.
    319. Yang, C.; Xu, L.; Zhou, Y.; Zhang, X.; Huang, X.; Wang, M.; Han, Y.; Zhai, M.; Wei, S.; Li, J., A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydrate Polymers 2010, 82 (4), 1297-1305.
    320. Tran, N. Q.; Joung, Y. K.; Lih, E.; Park, K. D., In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 2011, 12 (8), 2872-2880.
    321. Jo, H.-Y.; Kim, Y.; Nam, S.-Y.; Lee, B. J.; Kim, Y.-B.; Yun, Y. W.; Ahn, B., The inhibitory effect of quercitrin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice. Journal of veterinary science 2008, 9 (3), 267-272.
    322. Hamesch, K.; Borkham-Kamphorst, E.; Strnad, P.; Weiskirchen, R., Lipopolysaccharide-induced inflammatory liver injury in mice. Laboratory animals 2015, 49 (1_suppl), 37-46.
    323. Palermo, M.; Alves‐Rosa, F.; Rubel, C.; Fernandez, G.; Fernández‐Alonso, G.; Alberto, F.; Rivas, M.; Isturiz, M., Pretreatment of mice with lipopolysaccharide (LPS) or IL‐1β
    158
    exerts dose‐dependent opposite effects on Shiga toxin‐2 lethality. Clinical & Experimental Immunology 2000, 119 (1), 77-83.
    324. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L., Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9 (6), 7204.
    325. Szent-Györgyi, A., Cell division and cancer. Science 1965, 149 (3679), 34-37.
    326. Singh, N.; Joshi, A.; Toor, A. P.; Verma, G., Drug delivery: advancements and challenges. In Nanostructures for Drug Delivery, Elsevier: 2017; pp 865-886.
    327. Pattni, B. S.; Torchilin, V. P., Targeted drug delivery systems: strategies and challenges. In Targeted Drug Delivery: Concepts and Design, Springer: 2015; pp 3-38.
    328. Orive, G.; Hernandez, R. M.; Gascón, A. R. g.; Domı́nguez-Gil, A.; Pedraz, J. L., Drug delivery in biotechnology: present and future. Current opinion in biotechnology 2003, 14 (6), 659-664.
    329. Li, D.; Lu, B.; Huang, Z.; Xu, P.; Zheng, H.; Yin, Y.; Xu, H.; Liu, X.; Chen, L.; Lou, Y., A novel melphalan polymeric prodrug: Preparation and property study. Carbohydrate polymers 2014, 111, 928-935.
    330. Li, N.-N.; Lin, J.; Gao, D.; Zhang, L.-M., A macromolecular prodrug strategy for combinatorial drug delivery. J. Colloid Interface Sci. 2014, 417, 301-309.
    331. Kohn, K. W.; Hartley, J. A.; Mattes, W. B., Mechanisms of DNA sequence selective alkylation of guanine-N7 positions by nitrogen mustards. Nucleic acids research 1987, 15 (24), 10531-10549.
    159
    332. Zhang, W.; Zhu, W.; He, R.; Fang, S.; Zhang, Y.; Yao, C.; Ismail, M.; Li, X., Improvement of Stability and Anticancer Activity of Chlorambucil‐Tetrapeptide Conjugate Vesicles. Chinese Journal of Chemistry 2016, 34 (6), 609-616.
    333. Tadros, M. I.; Al-mahallawi, A. M., Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: development, preliminary safety evaluations and preclinical pharmacokinetic studies. International journal of pharmaceutics 2015, 493 (1-2), 439-450.
    334. Gómez-Canela, C.; Campos, B.; Barata, C.; Lacorte, S., Degradation and toxicity of mitoxantrone and chlorambucil in water. International Journal of Environmental Science and Technology 2015, 12 (2), 633-640.
    335. Yang, L.; Zhang, C.; Ren, C.; Liu, J.; Zhang, Y.; Wang, J.; Huang, F.; Zhang, L.; Liu, J., Supramolecular Hydrogel Based on Chlorambucil and Peptide Drug for Cancer Combination Therapy. ACS applied materials & interfaces 2018, 11 (1), 331-339.
    336. Miller, G. J.; Hansen, S. U.; Baráth, M.; Johannessen, C.; Blanch, E. W.; Jayson, G. C.; Gardiner, J. M., Synthesis of a heparin-related GlcN–IdoA sulfation-site variable disaccharide library and analysis by Raman and ROA spectroscopy. Carbohydrate research 2014, 400, 44-53.
    337. Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M. Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K., Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 185, 317-335.
    338. Ashwinkumar, N.; Maya, S.; Jayakumar, R., Redox-responsive cystamine conjugated chitin–hyaluronic acid composite nanogels. RSC Advances 2014, 4 (91), 49547-49555.
    160
    339. Zhang, J.-X.; Pan, M.; Su, C.-Y., Synthesis, photophysical properties and in vitro evaluation of a chlorambucil conjugated ruthenium (ii) complex for combined chemo-photodynamic therapy against HeLa cells. J. Mat. Chem. B 2017, 5 (24), 4623-4632.
    340. Vijayashree, I.; Niranjana, P.; Prabhu, G.; Sureshbabu, V.; Manjanna, J., Conjugation of Au nanoparticles with chlorambucil for improved anticancer activity. Journal of Cluster Science 2017, 28 (1), 133-148.
    341. Shaker, S.; Gardouh, A. R.; Ghorab, M. M., Factors affecting liposomes particle size prepared by ethanol injection method. Research in pharmaceutical sciences 2017, 12 (5), 346.
    342. Hanurry, E. Y.; Hsu, W.-H.; Darge, H. F.; Birhan, Y. S.; Mekonnen, T. W.; Andrgie, A. T.; Chou, H.-Y.; Cheng, C.-C.; Lai, J.-Y.; Tsai, H.-C., In vitro siRNA delivery via diethylenetriamine-and tetraethylenepentamine-modified carboxyl group-terminated Poly (amido) amine generation 4.5 dendrimers. Materials Science and Engineering: C 2019, 110245.
    343. Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z., Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. Journal of controlled release 2019, 296, 93-106.
    344. Hu, Y.; Wu, S.; He, Y.; Deng, L., A redox prodrug micelle co-delivering camptothecin and curcumin for synergetic B16 melanoma cells inhibition. Chemical Engineering Journal 2019, 362, 877-886.
    345. Ruan, Z.; Yuan, P.; Li, T.; Tian, Y.; Cheng, Q.; Yan, L., Redox-responsive prodrug-like PEGylated macrophotosensitizer nanoparticles for enhanced near-infrared imaging-guided
    161
    photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics 2019, 135, 25-35.
    346. Tian, C.; Asghar, S.; Xu, Y.; Chen, Z.; Zhang, J.; Ping, Q.; Xiao, Y., Tween 80-modified hyaluronic acid-ss-curcumin micelles for targeting glioma: Synthesis, characterization and their in vitro evaluation. International journal of biological macromolecules 2018, 120, 2579-2588.
    347. Yi, X.; Zhao, D.; Zhang, Q.; Xu, J.; Yuan, G.; Zhuo, R.; Li, F., A co-delivery system based on a reduction-sensitive polymeric prodrug capable of loading hydrophilic and hydrophobic drugs for combination chemotherapy. Polymer Chemistry 2016, 7 (38), 5966-5977.
    348. Ortega, A. L.; Mena, S.; Estrela, J. M., Glutathione in cancer cell death. Cancers 2011, 3 (1), 1285-1310.
    349. Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L. A.; Seliger, B., Hydrogen peroxide–production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling 2015, 13 (1), 39.
    350. Doskey, C. M.; Buranasudja, V.; Wagner, B. A.; Wilkes, J. G.; Du, J.; Cullen, J. J.; Buettner, G. R., Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox biology 2016, 10, 274-284.
    351. Song, N.; Liu, W.; Tu, Q.; Liu, R.; Zhang, Y.; Wang, J., Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids and Surfaces B: Biointerfaces 2011, 87 (2), 454-463.
    162
    352. Zeng, X.; Morgenstern, R.; Nyström, A. M., Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance. Biomaterials 2014, 35 (4), 1227-1239.
    353. Ye, W.-l.; Du, J.-b.; Na, R.; Song, Y.-f.; Mei, Q.-b.; Zhao, M.-g.; Zhou, S.-y., Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One 2014, 9 (5), e97358.
    354. Srivastava, A.; Amreddy, N.; Babu, A.; Panneerselvam, J.; Mehta, M.; Muralidharan, R.; Chen, A.; Zhao, Y. D.; Razaq, M.; Riedinger, N., Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Scientific reports 2016, 6.

    無法下載圖示 全文公開日期 2024/12/31 (校內網路)
    全文公開日期 2024/12/31 (校外網路)
    全文公開日期 2029/12/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE