簡易檢索 / 詳目顯示

研究生: 李家安
Chia-An Lee
論文名稱: 視覺評估方法進行頭戴式顯示器之色彩特性描述
Characterising a Head-Mounted Display Based on Visual Assessment
指導教授: 歐立成
Li-Chen Ou
口試委員: 孫沛立
Pei-Li Sun
林宗翰
Tzung-Han Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 155
中文關鍵詞: 虛擬實境視覺評估色彩特性描述
外文關鍵詞: Virtual reality, Visual assessment, Colour characterisation
相關次數: 點閱:373下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

虛擬實境(Virtual reality, VR)和相關載體如頭戴式顯示器(Head-mounted display, HMD)的應用日益增多。但對於 VR 色彩的相關研究仍然相對有限,其 中一個主要原因是 HMD 等 VR 影像呈現設備,在色彩量測方面存在著許多限 制,傳統的色彩量測方法無法完全適用於評估 HMD 或 VR 色彩的特性,而專用 的色彩量測儀器又成本高昂且難以取得。因此,為解決 HMD 的 VR 色彩之量測 和色彩特性化問題,本研究提出一種色彩特性描述方法,不使用色彩量測儀器 來量測 HMD 的 VR 色彩,而是進行一系列視覺評估實驗,並以視覺評估實驗結 果為基礎,建構 HMD 的色彩特性描述模型,實現對 HMD 中 VR 色彩的預測。
本研究共進行三個實驗:(一)LCD 顯示器視覺評估實驗、(二)HMD 視覺評估實驗、(三)HMD 色外貌實驗。其中,實驗一與實驗二的視覺評估, 均包含了分段調配(Partition scaling)、獨特色相選擇(Unique hue selection) 等視覺評估方法,此外實驗二還包括了對色(Colour matching)之視覺評估。 本研究採用 GOG(Gain-offset-gamma)模型架構進行顯示器色彩特性描述,分 段調配、獨特色相選擇、對色實驗這三種視覺評估方法,都是為了獲取建構 GOG 模型所需之輸入參數,以上述視覺評估方法之結果建置的色彩特性描述模 型,稱為「視覺評估 GOG 模型」與「明度評估 GOG 模型」。本研究也使用相 同的 HMD 進行實驗三的色外貌實驗,驗證模型的預測表現。
實驗結果顯示,該「視覺評估 GOG 模型」在預測色相(Hue)上表現最為 準確,且使用 CIECAM02 和 CIECAM16 的預測值都相當接近;明度(Lightness) 和視彩度(Colorfulness)的預測值則會低估。其中,CIECAM02 的明度預測值 和 CIECAM16 的視彩度預測較接近色外貌實驗結果。明度和視彩度的模型預測 值會低估,可能是由於 HMD 的顯示的亮度(Luminance)過高和模型缺乏彩度 相關的最佳化目標值所致。
本研究為 VR 色彩研究提供了一種使用視覺評估實驗建構 HMD「視覺評估 GOG 模型」的方法,並且研究結果顯示該模型對於 VR 色彩中的色相預測最為 準確、在明度和視彩度預測上則有高相關性。


Applications of virtual reality and related devices, such as head-mounted displays (HMDs), are increasing. However, interest of research on the colour science of VR is still lower than expected. One of the reasons is the limitation of colour measurement techniques for HMDs. The specific colour measuring instruments for near-eye devices are expensive. And whether the data of VR colour measured by general colour measuring instruments can represent the characterisation of HMDs or VR colours is a problem. Therefore, in this study, a method for characterising HMD colour by visual assessment was developed. By carrying out a series of visual assessment experiments, colour characterisation models were established without measuring HMDs directly.
There were three experiments conducted: (1) a visual assessment experiment on an LCD; (2) a visual assessment experiment on an HMD; (3) a colour appearance experiment using the HMD. Experiments (1) and (2) both involved two visual assessment methods, partition scaling and unique hue selection, while experiment (2) also included a color matching technique. The visual-assessment colour characterising model in this study were based on the GOG (Gain-offset-gamma) model. The partition scaling, unique hue selection, and colour matching techniques were used to obtain input parameters constructing GOG models. The GOG models built by methods mentioned above are called “visual assessment GOG model” and “lightness assessment GOG model”. The same HMD that adopted in experiment (2) was continuedly used in rear experiment (3).
The results show that visual assessment GOG models perform most accurately in predicting hue, and the predicted hue values from CIECAM02 and CIECAM16 are similar. However, the prediction of lightness and colorfulness are underestimated. In the comparison, predicted lightness value from CIECAM02 and predicted colorfulness value from CIECAM16 are slightly closer to the results of the colour appearance experiment. The underestimation of lightness and colorfulness by visual assessment models may be attributed to the high luminance of the HMD and the lack of optimal target values related to chroma or colorfulness in the models
This study provides a method for building visual assessment GOG models for HMDs in VR color research area, and the results indicate that the model accurately predicts hue in VR colors, while showing high correlation in predicting lightness and colorfulness.

摘要 i ABSTRACT ii 致謝 iv 目錄 vii 圖目錄 x 表目錄 xiv 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 3 1.3 相關論文發表 3 第二章 文獻探討 4 2.1 CIE色度學(Colorimetry) 4 2.1.1 CIEXYZ色彩系統 4 2.1.2 CIELAB色彩空間 6 2.1.3 CIE 1976 UCS(Uniform Chromaticity Scale) 9 2.2 顯示器色彩特性描述方法 10 2.2.1 8位元色彩數值計數(Digital count)原理 10 2.2.2 HSV色彩空間 10 2.2.3 GOG(Gain-offset-Gamma)色彩特性描述模型 11 2.2.4 其他色彩特性描述方法 13 2.3 心理物理學方法 14 2.3.1 數值估計法(Magnitude estimation) 15 2.3.2 分段調配法(Partition scaling) 15 2.3.3 獨特色相(Unique hue) 19 2.3.4 對色法(Colour matching) 22 2.4 以視覺評估方法進行顯示器色彩特性描述的相關研究 23 2.5 虛擬實境(Virtual reality)之相關研究 29 2.5.1 虛擬實境發展 29 2.5.2 虛擬實境色彩相關研究 30 第三章 研究方法 34 3.1 實驗設備 35 3.1.1 色彩量測儀器 35 3.1.2 顯示器 37 3.1.3 Unity遊戲引擎 43 3.2 實驗方法 44 3.2.1 分段調配(Partition Scaling)實驗方法 46 3.2.2 獨特色相選擇(Unique hue selection)實驗方法 48 3.2.3 對色(Colour matching)實驗方法 51 3.2.4 色外貌評估(Colour appearance estimating)實驗方法 52 3.3 實驗受測者 52 3.4 實驗一:LCD顯示器視覺評估實驗 54 3.4.1 環境設置 54 3.4.2 實驗流程 56 3.4.3 實驗數據分析流程 58 3.5 實驗二:HMD視覺評估實驗 59 3.5.1 環境設置 59 3.5.2 實驗流程 63 3.5.3 實驗數據分析流程 65 3.6 實驗三:HMD色外貌實驗 66 3.6.1 環境設置 66 3.6.2 實驗流程 68 3.6.3 實驗數據分析流程 69 3.7 數據分析方法 69 3.7.1 算術平均數(Arithmetic mean) 69 3.7.2 幾何平均數(Geometric mean) 69 3.7.3 均方根(Root mean square, RMS) 70 3.7.4 標準差(Standard deviation, SD, σ) 70 3.7.5 皮爾森積差相關係數(Pearson correlation coefficient, r) 70 3.7.6 變異係數(Coefficient of variation, CV) 71 3.7.7 與平均值的平均色差(The mean colour difference to the mean value, MCDM) 72 第四章 實驗結果與分析 74 4.1 實驗一結果(LCD顯示器視覺評估實驗) 74 4.1.1 分段調配實驗結果 74 4.1.2 獨特色相選擇實驗結果 81 4.1.3 實驗一「簡化版量測值GOG模型」 83 4.1.4 實驗一「簡化版量測值GOG模型」與「量測值GOG模型」之比較 86 4.1.5 實驗一「視覺評估GOG模型」 91 4.1.6 實驗一「視覺評估GOG模型」與「量測值GOG模型」之比較 96 4.2 實驗二結果(HMD視覺評估實驗) 101 4.2.1 視覺評估實驗結果 101 4.2.2 實驗二「視覺評估GOG模型」 104 4.2.3 實驗二「視覺評估GOG模型」與「量測值GOG模型」之比較 111 4.2.4 實驗二「明度評估GOG模型」 115 4.2.5 實驗二「明度評估GOG模型」與「視覺評估GOG模型」之比較 121 4.2.6 實驗一與實驗二「視覺評估GOG模型」比較 126 4.3 實驗三結果(HMD色外貌實驗) 127 4.3.1 色外貌實驗結果 127 4.3.2 與實驗二「視覺評估GOG模型」預測比較 128 4.3.3 與實驗二「明度評估GOG模型」預測比較 132 4.3.4 綜合比較 134 4.4 實驗受測者可信度分析 135 4.4.1 分段調配實驗之受測者重複性與一致性 135 4.4.2 獨特色相選擇實驗之受測者重複性與一致性 142 4.4.3 對色實驗之受測者重複性與一致性 145 4.4.4 色外貌實驗之受測者一致性 146 第五章 結論與未來研究方向建議 147 5.1 結論 147 5.2 未來研究方向建議 149 參考文獻 151 附錄 156 附錄一 色彩量測設備詳細硬體規格 156 附錄二 顯示器詳細硬體規格 158 附錄三 實驗一對受測者之說明與操作方式解說 159 附錄四 實驗二對受測者之說明與操作方式解說 161 附錄五 實驗三對受測者之說明與操作方式解說 164 附錄六 實驗一受測者之實驗數據 165 附錄七 實驗二受測者之實驗數據 171 附錄八 實驗三受測者之實驗數據 179

英文參考文獻:
Anthes, C., García-Hernández, R. J., Wiedemann, M., & Kranzlmüller, D. (2016). State of the art of virtual reality technology. In 2016 IEEE aerospace conference (pp. 1-19). Montana, United States: IEEE.

Berns, R. S. (1996). Methods for characterizing CRT displays. Displays,16(4), 173–182.

Cho, J. M., Kim, Y. do, Jung, S. H., Shin, H., & Kim, T. (2017). Screen door effect mitigation and its quantitative evaluation in VR display. SID International Symposium Digest of Technical Papers, 48(1), 1154–1156.

Colantoni, P., & Thomas, J. B. (2009). A color management process for real time color reconstruction of multispectral images. In Salberg, AB., Hardeberg, J.Y., Jenssen, R. (Eds.), Image Analysis. SCIA 2009. Lecture Notes in Computer Science, vol 5575. Berlin, Heidelberg, German: Springer.

Colombo, E., & Derrington, A. (2001). Visual calibration of CRT monitors. Displays, 22(3), 87-95.

Fairchild, M. D. (2013). Color appearance models (3rd ed.). West Sussex, United Kingdom: John Wiley & Sons, Ltd.

Gescheider, G. A. (1997). Psychophysics: the fundamentals (3rd ed.). New Jersey, United States: Lawrence Erlbaum Associates, Inc.

Gil Rodríguez, R., Bayer, F., Toscani, M., Guarnera, D. Y., Guarnera, G. C., & Gegenfurtner, K. R. (2022). Colour calibration of a head mounted display for colour vision research using virtual reality. SN Computer Science, 3, 1-10.

Ha, H., Kwak, Y., Kim, H., & Seo, Y. J. (2020). Discomfort luminance level of head‐mounted displays depending on the adapting luminance. Color Research & Application, 45(4), 622-631.

Hu, Y., Luo, M. R., Zhao, B., & Cao, M. (2019). Developing a visual method to characterize displays. In IS&T 27th Color and Imaging Conference (pp. 75-79). Paris, France: IS&T.

Hunt, R., & Pointer, M. (2011). Measuring colour (4th ed.). West Sussex, United Kingdom: John Wiley & Sons, Ltd.

Luo, M. R., Clarke, A. A., Rhodes, P. A., Po, A., & Tait, C. J. (1991). Quantifying colour appearance. Part I. LUTCHI colour appearance data. Colour Research & Application, 16(3), 166–180.

Ma, C. H., & Ou, L. C. (2019). An initial study of colour appearance in virtual reality. In Proceedings of the 29th Quadrennial Session of the CIE (pp. 32–35). Washington DC, United States: CIE.

Maxwell, D., Oster, E., Lynch, S., Maxwell, D., Oster, E., & Lynch, S. (2018). Evaluating the applicability of repurposed entertainment virtual reality devices for military training. MODSIM World, 28, 1-10.

Mazuryk, T., & Gervautz, M. (1996). History, applications, technology and future. Virtual Reality, 72.

Munsell, A. E. O, Sloan, L. L., & Godlove, I. H. (1933). Neutral value scales. I. Munsell neutral value scale. Journal of the Optical Society if America, 23, 394-411.

Ohno, Y., & Blattner, P. (2014). Chromaticity difference specification for light sources. CIE technical note 001:2014. Retrieved from https://files.cie.co.at/738_CIE_TN_001-2014.pdf

Pascale, D. (2006). RGB coordinates of the Macbeth ColorChecker. Montreal, Canada: The BabelColor Company.

Sauer, Y., Sipatchin, A., Wahl, S., & García García, M. (2022). Assessment of consumer VR-headsets’ objective and subjective field of view (FoV) and its feasibility for visual field testing. Virtual Reality, 26(3), 1089-1101.

Schanda. J. (2007). CIE colorimetry. In Schanda. J. (Eds.), Colorimetry: understanding the CIE system. Hoboken, N J, Canada: John Wiley & Sons, Ltd.

Shamey, R., Zubair, M., & Cheema, H. (2019). Unique hue stimulus selection using Munsell color chips under different chroma levels and illumination conditions. Journal of the Optical Society of America A, 36(6), 983–993.

Stevens, S. S. (1958). Problems and methods of psychophysics. Psychological Bulletin, 55(4), 177–196.

Sun, P. L., & Luo, R. M. (2013). Color characterization models for OLED displays. SID International Symposium Digest of Technical Papers, 44(1), 1453–1456.

Tian, D., Xu, L., & Luo, M. R. (2019). The characterization of HDR OLED display. IS &T International Symposium on Electronic Imaging Science and Technology, 2019(10).

Wen, S., & Wu, R. (2006). Two‐primary crosstalk model for characterizing liquid crystal displays. Color Research & Application, 31(2), 102-108.

van de Perre, L., Ryckaert, W. R., Dujardin, M., Hanselaer, P., & Smet, K. A. G. (2019). Derivation of brightness scales using partition scaling. LEUKOS - Journal of Illuminating Engineering Society of North America, 17(2), 125–139.

Xiao, K., Fu, C., Karatzas, D., & Wuerger, S. (2011a). Visual gamma correction for LCD displays. Displays, 32(1), 17–23.

Xiao, K., Wuerger, S., Fu, C., & Karatzas, D. (2011b). Unique hue data for colour appearance models. Part I: Loci of unique hues and hue uniformity. Color Research & Application, 36(5), 316–323.

Zhan, T., Yin, K., Xiong, J., He, Z., & Wu, S.-T. (2020). Augmented reality and virtual reality displays: perspectives and challenges. iScience, 23(8), 101397.

中文參考文獻:
吳晶晶(2021)。虛擬實境色外貌之參考白研究。國立臺灣科技大學色彩與照明科技研究所,台北市

馬季涵(2020)。手機虛擬實境的色外貌。國立臺灣科技大學色彩與照明科技研究所,台北市

蔡孟哲(2021)。基於人眼感知的VR頭戴式顯示器雜散光檢測方法。國立臺灣科技大學色彩與照明科技研究所,台北市

網站:
Doc-Ok.org. (2016). Optical Properties of Current VR HMDs. Retrieved July 20, 2023, from http://doc-ok.org/?p=1414

Display specifications. 27” BenQ SW2700PT - Specifications. Retrieved July 20, 2023, from https://www.displayspecifications.com/en/model/9c90705

Radiant Vision Systems. (2022). AR/VR lens: For near-eye display testing within headsets. Retrieved July 20, 2023, from https://www.radiantvisionsystems.com

SharkD. (2015). File: HSV color solid cone cylinder. Retrieved July 20, 2023, from https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png

HTC台灣。VIVE頭戴式顯示器規格。2023年7月20日檢自https://www.vive.com/tw/product/vive/

Topcon。超低亮度分光輻射計SR-UL1R。2023年7月20日檢自https://www.topcon-techno.co.jp/zh/products/sr-ul1r/

深藍科技。X-rite i1 Pro2分光色度計規格。2023年7月20日檢自https://www.deepblue.com.tw/products/X-rite/i1/i1Basic_Pro2

QR CODE