簡易檢索 / 詳目顯示

研究生: 許俊彥
Chun-yen Hsu
論文名稱: 行動隨意接取網路的路由效率暨網路容量以及網際網路連接性之研究
Study of Routing Efficiency, Network Capacity and Internet Connectivity in Mobile Ad Hoc Access Networks
指導教授: 陳金蓮
Jean-Lien C. Wu
口試委員: 蔡志宏
Zse-hong Tsai
許獻聰
Shiann-tsong Sheu
邱舉明
Ge-ming Chiu
馮輝文
Huei-wen Ferng
鄭瑞光
Ray-guang Cheng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 101
中文關鍵詞: 行動隨意接取網路路由多跳傳輸指定對象廣播共存封包封裝附加傳輸網際網路連接性孤立點
外文關鍵詞: mobile ad hoc access network (MAHAN), routing, multihop transmission, appointed broadcast, coexist, packing, accompanying, Internet connectivity, isolated node
相關次數: 點閱:239下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近十年來各種無線接取網路的蓬勃發展,開啟了行動網際網路(mobile Internet)的新時代,引領了許多行動服務諸如行動電子商務的新契機,大幅改變了人們的生活型態。在以往的無線接取網路中,使用者必須位於無線閘道器(gateway)的傳輸範圍之內,透過無線閘道器來存取網際網路,因此,無線接取網路的服務範圍直接受限於網路基礎建設的佈建。
行動隨意接取網路(mobile ad hoc access network, MAHAN)能夠基於既有的網路基礎建設,擴大無線接取網路的服務範圍,對行動用戶提供更佳的接取服務。位於閘道器無線傳輸範圍內的行動台可以直接與閘道器通訊,網內其餘的行動台則可以透過多跳傳輸(multihop transmission)的方式來存取網際網路。此外,除了作為對使用者提供接取服務的接取網路之外,行動隨意接取網路亦可應用於感測器網路。
本論文的研究內容區分為三大部分。首先,在行動隨意接取網路中,行動台的移動性使得路由工作產生相當大的負擔(overhead)。本論文根據無線隨意接取網路的拓樸與流量特性、IEEE 802.11無線區域網路協定以及反應式路由協定(reactive routing protocol)的運作原理,在一新路徑建立之後,以指定對象廣播(appointed broadcast, ABO)的方式廣泛地散佈路徑資訊,使得行動台可以預先獲得路徑資訊,減少行動台搜尋路徑所造成的負擔。此外,我們也探討支援ABO的行動台與標準的IEEE 802.11行動台兩者在同一MAHAN中共存的問題。
其次,在使用IEEE 802.11的行動隨意接取網路中,由於採用競爭式的媒體存取協定,當行動台數目或者資料流量增加時,行動台耗費大量時間在執行後退(backoff)演算法,而且發生訊號碰撞(collision)的機會大為增加,導致網路效能諸如延遲時間(delay)與封包到達率(delivery ratio)顯著地惡化。其中,網路效能惡化的情況,下行(downstream)資料流遠較上行(upstream)資料流更為明顯,因此行動隨意接取網路的網路容量,亦即其可允許的連接數(sessions),受到相當大的限制。為了提高行動隨意接取網路的網路容量,我們在媒體存取層(MAC layer)將封包作封裝(packing)的處理,並以附加傳輸(accompanying)的方式來平衡上下行資料流的網路效能差距。為此,本論文提出Carrier Sense Multiple Access with Collision Avoidance, Packing and Accompanying (CSMA/CAPA) 協定,模擬結果顯示使用CSMA/CAPA協定的行動隨意接取網路,其可容納的資料流數提昇可達100%。此外,我們也探討了適合CSMA/CAPA協定使用的排隊策略(queueing strategy)。
最後,本論文探討一維空間上的行動隨意接取網路的網際網路連接性(Internet connectivity)。網際網路連接性是指所有行動台在拓樸上都能夠與網際網路連接的機率。一維空間上的行動隨意接取網路相當適合用來作為車輛隨意網路(vehicle ad hoc network, VANET)的分析模型,給定一個一維空間的大小、閘道器的數目與行動台的個數,我們推導出一維行動隨意接取網路的網際網路連接性之公式解。另外,我們也探討孤立點(isolated node)的個數,孤立點是指無法與網際網路連接的行動台。這些結果有助於將來車輛隨意網路的協定設計與用戶管理等應用。


The rapid development of wireless access networks enables the promised mobile Internet and changes people’s life in the last decade. A typical wireless access network uses point-to-multipoint structure that users have to stay within the radio coverage of the gateway in order to obtain the Internet access services. Therefore, the deployment of gateways defines the service area of the wireless access network.
Without the need of deploying new gateways, the service area can be expanded using the mobile ad hoc access network (MAHAN). In a MAHAN, mobile nodes are configured in the ad hoc mode that those who stay away from the radio coverage of the gateway can obtain Internet access services via multihop transmissions. MAHANs have the advantages of easy deployment and high flexibility, and are emerging as an important type of future access networks.
Routing is a necessary but laborious work in MAHANs because of nodes’ mobility. In reactive routing protocols, mobile nodes that intend to access the Internet have to discover routes to the gateway first, which may result in considerable bandwidth cost. In this thesis, we propose the Appointed BrOadcast (ABO) method to reduce the cost of route discovery in MAHANs. Using the ABO method can achieve this goal on the basis of packet overhearing. Functions that are necessary for network and data link layers to employ the ABO method are also discussed. Simulation results show that using the ABO method can significantly reduce the cost on route discoveries. In addition, due to the widespread use of legacy IEEE 802.11 nodes, the problem of how ABO-enhanced and legacy IEEE 802.11 nodes can coexist in a MAHAN is studied.
In IEEE 802.11-based MAHANs, as the number of sessions increases, the network suffers from serious contentions and collisions. In which case, network performance such as end-to-end delay and delivery ratio degrades rapidly. This limits the number of allowable sessions in a MAHAN. In this thesis, we study the multimedia traffic support of MAHANs using the proposed carrier sense multiple access with collision avoidance, packing and accompanying (CSMA/CAPA) protocol, and other existing medium access control protocols. The CSMA/CAPA protocol introduces two schemes, namely, the packing and accompanying schemes, to the well known CSMA/CA protocol. The CSMA/CAPA protocol improves network capacity in two aspects. Firstly, by using the packing scheme, more packets can be delivered to the recipient during a transmission. Secondly, using the accompanying scheme, the protocol provides nodes with more transmission opportunities. The impact of different queueing strategies on the CSMA/CAPA protocol is studied. We evaluate the performance of the CSMA/CAPA protocol through extensive simulations. The results show that using the CSMA/CAPA protocol can significantly improve the multimedia traffic support capability of MAHANs. Simulation results show that using the CSMA/CAPA protocol can improve the MAHAN capacity up to 100%.
In the context of multihop transmissions, less number of gateways is required for Internet access while a certain level of Internet connectivity still holds. We investigate the Internet connectivity, which is the probability that all mobile nodes are Internet-reachable, in one-dimensional MAHANs. We show the relationship between the Internet connectivity and the deployment of gateways. We also investigate the mean number of isolated nodes, who are not Internet-reachable, in a one-dimensional MAHANs. These results are useful for network operators to deploy gateways, manage clients and design protocols for future vehicular network applications.

中文摘要 I Abstract III Acknowledgements V List of Figures VIII List of Tables X Chapter 1 Introduction 1 Chapter 2 Background of the IEEE 802.11-Based Mobile Ad Hoc Access Networks 4 2.1 IEEE 802.11 4 2.2 Mobile Ad Hoc Networks (MANETs) 8 2.2.1 Routing in MANETs 11 2.3 Mobile Ad Hoc Access Networks (MAHANs) 13 Chapter 3 Support of Efficient Route Discovery in MAHANs 17 3.1 Introduction 17 3.2. The ABO Method 19 3.2.1 MAC layer design 20 3.2.2 Logical Link Control and Network Layers 21 3.2.3 The Reply Storm Problem 23 3.2.4 Coexistence with Legacy IEEE 802.11 Nodes 25 3.3. Simulation Study 26 3.3.1 Simulation Model 26 3.3.2 Performance Comparisons 28 3.4 Summary 38 Chapter 4 Enhancing MAHAN Capacity by CSMA/CAPA 40 4.1 Introduction 40 4.2 Related work 41 4.3 The CSMA/CAPA protocol 43 4.3.1 The Packing Scheme 44 4.3.2 The Accompanying Scheme 49 4.4 Performance evaluation 51 4.4.1 Parameter settings 51 4.4.2 Simulation results 56 4.5 Summary 65 Chapter 5 Internet Connectivity and Number of Isolated Nodes in 1-D MAHANs 67 5.1 Introduction 67 5.2 System model 68 5.2.1 Related work 68 5.2.2 Network types and definitions 69 5.3 Internet connectivity 73 5.3.1 C-Type-1 network 73 5.3.2 C-Type-2 network 74 5.3.3 C-Type-3 network 74 5.3.4 C-Type-4 network 75 5.4 Isolated nodes 75 5.4.1 I-Type-1 network 75 5.4.2 I-Type-2 and I-Type-3 networks 76 5.4.3 I-Type-4 network 79 5.5 Verification 81 5.6 Summary 85 Chapter 6 Conclusions 87 References 91 Biography 99 Publication List 100

[1] IEEE 802.11, “IEEE 802.11 local and metropolitan area networks: wireless LAN medium access control (MAC) and physical (PHY) specifications,” ISO/IEC 8802-11: 1999(E).
[2] HiperLan2 Resource Center, http://www.palowireless.com/hiperlan2/.
[3] IEEE 802.16, “IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access systems,” IEEE Std 802.16-2004.
[4] UMTS forum, http://www.umts-forum.org/.
[5] C. -Y. Hsu, J. -L. C. Wu and S. -T. Wang, “Support of efficient route discovery in mobile ad hoc access networks,” IEICE Transactions on Communications, vol. E89-B, no. 4, April 2006, pp. 1252-1262.
[6] J. -H. Song, V. W. S. Wong and V. C. M. Leung, “Efficient on-demand routing for mobile ad hoc wireless access networks,” IEEE Journal on Selected Area in Communications, vol. 22, no. 7, Sept. 2004, pp. 1374-1383.
[7] A. Acharya, C. Bisdikian, A. Misra and Y. -B. Ko, “ts-PWLAN: a value-add system for providing tiered wireless services in public hot-spots,” in Proc. IEEE ICC 2003, May 2003, Anchorage, Alaska, USA, vol. 1, pp. 193-197.
[8] Public wireless LAN Internet access solutions, http://www.ericsson.com/products/hp/PWLAN_pa.shtml.
[9] Integrating PWLAN/hotspots into existing business networks, http://www.hpintelco.net/portfolio/pwlan_hotspots.htm.
[10] PWLAN operators & hotspots Market Analysis, Data & Figures, http://www.gii.co.jp/press/ba11884_en.shtml.
[11] JiWire, http://www.jiwire.com/.
[12] H. -H. Liu and J. -L. C. Wu, “Packet telephony support for the IEEE 802.11 wireless LAN,” IEEE Communications Letters, vol. 4, no. 9, Sept. 2000, pp. 286-288.
[13] M. S. Gast, 802.11 WLANs: the Definitive Guide, O’Reilly, 2002.
[14] W. M. Moh, D. Yao and K. Makki, “Analyzing the hidden-terminal effects and multimedia support for wireless LAN,” Computer Communications, vol. 23, no. 10, May 2000, pp. 998-1013.
[15] K. Xu, M. Gerla and S. Bae, “Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, July 2003, pp. 107-123.
[16] IEEE 802.11a, “Part 11: wireless lan medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHZ band,” IEEE std 802.11a-1999.
[17] IEEE 802.11b, “Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band,” IEEE std 802.11b-1999.
[18] IEEE 802.11g, “Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 4: further higher data rate extension in the 2.4 GHz bnd,” IEEE std 802.11g-2003.
[19] IEEE wireless LAN working group, http://www.ieee802.org/11/.
[20] U. Varshney, “The status and future of 802.11-based WLANs,” IEEE Computer, vol. 36, no. 6, June 2003, pp. 102-105.
[21] Y. Xiao, “IEEE 802.11n: enhancements for higher throughput in wireless LANs,” IEEE Wireless Communications, vol. 12, no. 6, Dec. 2005, pp. 82-91.
[22] IEEE 802.11e, “Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 8: medium access control (MAC) quality of service enhancements,” IEEE std 802.11e-2005.
[23] Simple efficient extensible mesh (SEE-Mesh) proposal, IEEE 802.11-05/0562r4, Jan. 2006.
[24] Usage models for 802.11s, IEEE 802.11-04/662r16.
[25] Mobile ad-hoc networks (manet) Charter, http://www.ietf.org/html.charters/manet-charter.html.
[26] M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity of ad hoc wireless networks,” IEEE/ACM Transactions on Networking, vol. 10, no. 4, Aug. 2002, pp. 477-486.
[27] S. A. Jafar, “Too much mobility limits the capacity of wireless ad hoc networks,” IEEE Transactions on Information Theory, vol. 51, no. 11, Nov. 2005, pp. 3954-3965.
[28] C. Comaniciu and H. V. Poor, “On the capacity of mobile ad hoc networks with delay constraints,” IEEE Transactions on Wireless Communications, vol. 5, no. 8, Aug. 2006, pp. 2061-2071.
[29] K. Oikonomou, N. Pronios, and I. Stavrakakis, “Performance analysis of topology-unaware TDMA MAC schemes for ad hoc networks with topology control,” Computer Communications, vol. 28, no. 3, Feb. 2005, pp. 313-324.
[30] T. Kobayashi, “TCP performance over IEEE 802.11 based multichannel MAC protocol for mobile ad doc networks,” IEICE Transactions on Communications, vol. E86-B, no.4, pp. 1307-1316.
[31] Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks,” ACM Mobile Computing and Communications Review, vol. 10, no. 1, Jan. 2006, pp. 31-43.
[32] Y. -C. Tseng, C. -M. Chao, S. -L. Wu and J. -P. Sheu, “Dynamic channel allocation with location awareness for multi-hop mobile ad hoc networks,” Computer Communications, vol. 25, no. 7, May 2002, pp. 676-688.
[33] J. Wu and F. Dai, “Mobility-sensitive topology control in mobile ad hoc networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 6, June 2006, pp. 522-535.
[34] M. Cardei, J. Wu; S. Yang, “Topology control in ad hoc wireless networks Using cooperative communication,” IEEE Transactions on Mobile Computing, vol. 5, no. 6, June 2006, pp. 711-724.
[35] Z. Huang and C. -C. Shen, “Multibeam antenna-based topology control with directional power intensity for ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 5, Sept.-Oct. 2006, pp. 508-517.
[36] S. -C. Wang, D. S. L. Wei and S. -Y. Kuo, “An SPT-based topology control algorithm for wireless ad hoc networks,” Computer Communications, vol. 29, no. 16, Oct. 2006, pp. 3092-3103.
[37] A. Raniwala and T. -C. Chiueh, “Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network,” in Proc. IEEE INFOCOM 2005, Mar. 2005, Miami, vol. 3, pp. 2223-2234.
[38] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance Vector Routing (DSDV) for Mobile Computers,” in Proc. ACM SIGCOMM’94, Oct. 1994, London, United Kingdom, pp. 234-244.
[39] http://www.ietf.org/internet-drafts/draft-ietf-manet-olsrv2-01.txt.
[40] S. Murthy and J. J. Garcia-Luna-Aceves, “A Routing Protocol for Packet Radio Networks,” in Proc. ACM MOBICOM’95, Nov. 1995, Berkeley, California, USA, pp. 86-95.
[41] IETF RFC 3561, http://www.ietf.org/rfc/rfc3561.txt.
[42] http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt.
[43] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Networks,” Mobile Computing, 1996, Boston, USA, Kluwer Academic Publishers, pp. 153-181.
[44] E. Hyytiä, P. Lassila and J. Virtamo, “Spatial node distribution of the random waypoint mobility model with applications,” IEEE Transactions on Mobile Computing, vol. 5, no. 6, June 2006, pp. 680-694.
[45] http://www.ietf.org/internet-drafts/draft-ietf-manet-zrp-02.txt.
[46] M. Joa-Ng and I.-T. Lu, “A peer-to-peer zone-based two-level link state routing for mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, Aug. 1999, pp. 1415-1425.
[47] http://www.primidi.com/2005/08/30.html#a1289.
[48] http://www.mitre.org/work/tech_transfer/mobilemesh/
[49] M. S. Corson, J. Macker, S. G. Batsell, “Architectural considerations for mobile mesh networking,” in Proc. IEEE MILCOM 1996, Oct. 1996, McLean, VA, USA, vol. 1, pp. 225-229.
[50] “Mobile mesh networking: bridge to the future of broadband wireless,” http://www.packethop.com/pdf/pw_junejuly_reprint.pdf.
[51] A. Kamerman and L. Monteban, “WaveLAN-II: a high-performance wireless LAN for the unlicensed band,” Bell Labs. Technical Journal, vol. 2, no. 3, Summer 1997, pp. 118-133.
[52] G. Holland, N. Vaidya and P. Bahl, “A rate-adaptive MAC protocol for multi-hop wireless networks,” in Proc. ACM MobiCom 2001, July 2001, Rome, Italy, pp. 236-251.
[53] B. Sadeghi, V. Kanoia, A. Sabharwal and E. Knightly, “Opportunistic media access for multirate ad hoc networks,” in Proc. ACM MobiCom 2002, Sept. 2002, Atlanta, Georgia, USA, pp. 24-35.
[54] C. R. Lin and Y. -H. J. Chang, “AAR: an adaptive rate control protocol for mobile ad hoc networks,” in Proc. IEEE ICON 2003, Sept. 2003, Sydney, Australia. pp. 585-590.
[55] J. Dunn, M. Neufeld, A. Sheth, D. Grunwald and J. Bennett, “A practical cross-layer mechanism for fairness in 802.11 networks,” Mobile Networks and Applications, vol. 11, no. 1, Feb. 2006, pp. 37-45.
[56] G. Tan and J. Guttag, “Long-term time-share guarantees are necessary for wireless LANs,” in Proc. ACM SIGOPS European workshop 2004, Sept. 2004, Leuven, Belgium, no. 35.
[57] Z. Fan, “High throughput reactive routing in multi-rate ad hoc networks,” IEE Electronics Letters, vol. 40, no. 25, Dec. 2004, pp. 1591-1592.
[58] H. Li and D. Yu, “Comparison of ad hoc and centralized multihop routing,” in Proc. WPMC 2002, Oct. 2002, Honolulu, Hawaii, vol. 2, pp. 791-795.
[59] Y. Sun, E. M. Belding-Royer, “Application-oriented routing in hybrid wireless networks,” in Proc. IEEE ICC 2003, May 2003, Anchorage, Alaska, USA, vol. 1, pp. 502-506.
[60] M. Benzaid, P. Minet, K. A. Agha, C. Adjih and G. Allard, “Integration of Mobile-IP and OLSR for a Universal Mobility,” Wireless Networks, Jul. 2004, vol. 10, no. 4, pp. 377-388.
[61] S. H. Bae, S. Lee and M. Gerla, “Unicast performance analysis of extended ODMRP in a wired-to-wireless ad-hoc network testbed,” in Proc. IEEE MILCOM 2002, Oct. 2002, Anaheim, California, USA, vol. 2, pp. 1228-1232.
[62] P. E. Engelstad, A. Tønnesen, A. Hafslund and G. Egeland, “Internet Connectivity for Multi-Homed Proactive Ad Hoc Networks,” in Proc of IEEE ICC 2004, June 2004, Paris, France, pp. 4050-4056.
[63] Y. -C. Tseng, C. -C. Shen and W. -T. Chen, “Integrating mobile IP with ad hoc networks,” IEEE Computer, May 2003, vol. 36, no. 5, pp. 48-55.
[64] IETF RFC 3344, “IP Mobility Support for IPv4”.
[65] IETF RFC 3775, “Mobility Support in IPv6”.
[66] A. Striegel, R. Ramanujan and J. Bonney, “A protocol independent gateway for ad hoc wireless networks,” in Proc. of IEEE LCN 2001, Nov. 2001, Tampa, FL, USA, pp. 92-101.
[67] U. Jönsson, F. Alriksson, T. Larsson, P. Johansson and G. Q. Maguire Jr., “MIPMANET: mobile IP for mobile ad hoc networks,” in Proc. of ACM MobiHoc 2000, Nov. 2000, Boston, Massachusetts, USA, pp.75-85.
[68] Y. Sun, E. M. B. -Royer, and C. E. Perkins, “Internet Connectivity for Ad hoc Mobile Networks,” International Journal of Wireless Information Networks, vol. 9, no. 2, April 2002, pp. 75-88.
[69] G. Åhlund and A. Zaslavsky, “Extending Global IP Connectivity for Ad Hoc Networks,” Telecommunication Systems, vol. 24, no. 2-4, pp. 221-250.
[70] M. Ergen and A. Puri, “MEWLANA-mobile IP enriched wireless local area network architecture,” in Proc. IEEE VTC 2002-fall, Sept. 2002, Vancouver, Canada, vol. 4, pp. 2449-2453.
[71] R. Wakikawa, J. T. Malinen, C. E. Perkins, A. Nilsson and A. J. Tuominen, “Global connectivity for IPv6 mobile ad hoc networks,” IETF draft, draft-wakikawa-manet-globalv6-04.txt.
[72] C. Jelger, T. Noel and A. Fery, “Gateway and address autoconfiguration for IPv6 adhoc networks,” IEFT draft, draft-jelger-manet-gateway-autoconf-v6-02.txt.
[73] P. M. Ruiz, F. J. Ros and A. Gomez-Skarmeta, “Internet Connectivity for Mobile Ad Hoc Networks: Solutions and Challenges,” IEEE Communication Magazine, vol. 43, no. 10, Oct. 2005, pp. 118-125.
[74] T. Camp, J. Boleng, B. Williams, L. Wilcox and W. Navidi, “Performance Comparison of Two Location Based Routing Protocols,” in Proc. IEEE INFOCOM 2002, June 2002, New York, USA, vol. 3, pp. 1678-1687.
[75] L. M. Feeney “An Energy Consumption Model for Performance Analysis of Routing Protocols for Mobile Ad Hoc Networks,” Mobile Networks and Applications, June 2001, vol. 6, no. 3, pp. 239-249.
[76] S. -J. Lee and M. Gerla, “AODV-BR: Backup Routing in Ad Hoc Networks,” in Proc. IEEE WCNC 2000, September 2000, Chicago, USA, vol. 3, pp. 1311-1316.
[77] M. K. Marina and S. R. Das, “Impact of Caching and MAC Overheads on Routing Performance in Ad Hoc Networks,” Computer Communications, vol. 27, no. 3, Feb. 2004, pp. 239-252.
[78] H. Hassanein and A. Zhou, “Routing With Load Balancing in Wireless Ad Hoc Networks,” in Proc. ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems 2001, July 2001, Rome, Italy, pp. 89-96.
[79] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume II: The Implementation, Addison Wesley, 2003, p. 216.
[80] J. R. Lorch and A. J. Smith, “Software strategies for portable computer energy management,” IEEE Personal Communications, June 1998, vol. 5, no. 3, pp. 60-73.
[81] P. Pradhan and T. -C. Chiueh, “Real-Time Performance Guarantees over Wired/Wireless LANs,” in Proc. IEEE RTAS 1998, June 1998, Denver, Colorado, USA, pp. 29-38.
[82] S. -T. Sheu, J. Chen and T. Chen, “Data flushing data transfer protocol for IEEE 802.11 ad hoc wireless network,” in Proc. IEEE WCNC 2003, Mar. 2003, New Orleans, Louisiana, USA, vol. 3, pp. 1533-1537.
[83] A. Acharya, A. Misra and S. Bansal, “High-performance architectures for IP-based multihop 802.11 networks,” IEEE Wireless Communications, vol. 10, no. 5, Oct. 2003, pp. 22-28.
[84] H. Liu and D. Raychaudhuri, “Label switched multi-path forwarding in wireless ad-hoc networks,” in Proc. IEEE PerCom 2005, Mar. 2005, Kauai, Hawaii, pp. 248-252.
[85] C. -H. Yeh, H. T. Mouftah and H. Hassanein, “Signaling and QoS guarantees in mobile ad hoc networks,” in Proc. IEEE ICC 2002, May 2002, New York, USA, vol. 5, pp. 3284-3290.
[86] C. -H. Yeh, “Ad-hoc MPLS for virtual-connection-oriented mobile ad hoc networks,” in Proc. IEEE VTC Spring 2002, May 2002, Birmingham, Alabama, USA, vol. 3, pp. 1101-1105.
[87] J. -M. Chung, K. Srinivasan, S. -C. Kim, Z. Quan and M. A. S. Benito, “Performance analysis of WMPLS signaling and control in ad hoc networks,” in Proc. MWSCAS 2002, Aug. 2002, Tulsa, Oklahoma, USA, vol. 1, pp. 627-630.
[88] D. Raguin, M. Kubisch, H. Karl, and A. Wolisz, “Queue-driven cut-through medium access in wireless ad hoc networks”, in Proc. IEEE WCNC 2004, Atlanta, Georgia, USA, Mar. 2004, vol. 3, pp. 1909-1914.
[89] Y. Xiao and H. Li, “Voice and video transmissions with global data parameter control for the IEEE 802.11e enhance distributed channel access,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 11, Nov. 2004, pp. 1041-1053.
[90] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 7, July 2001, pp. 1300-1315.
[91] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim and K. Obraczka, “A new TCP for persistent packet reordering,” ACM/IEEE Transactions on Networking, vol. 14, no. 2, Apr. 2006, pp. 369-382.
[92] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed., Prentice Hall PTR, 2002.
[93] D. S. Lum, M. Medard and I. C. Abou-Faycal, “On the performance of peaky capacity-achieving signaling on multipath fading channels,” IEEE Transactions on Communications, vol. 52, no. 6, June 2004, pp. 931-938.
[94] The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns/index.html.
[95] G. Anastasi, E. Borgia, M. Conti and E. Gregori, “Wi-Fi in ad hoc mode: a measurement study,” in Proc. IEEE Percom 2004, Mar. 2004, Orlando, Florida, USA, pp. 145-154.
[96] One-way transmission time, ITU-T G.114, 1996.
[97] B. Douskalis, IP telephony, the integration of robust VoIP Services, 2002, Prentice-Hall Englewood Cliffs, NJ, USA.
[98] B. Goode, “Voice over Internet protocol (VoIP),” Proceedings of the IEEE, vol. 90, no. 9, Sept. 2002, pp. 1495-1517.
[99] S. -T. Sheu and T. -F. Sheu, “A bandwidth allocation/sharing/extension protocol for multimedia over IEEE 802.11 ad hoc wireless LANs,” IEEE Journal on Selected Areas in Communications, vol. 19, no. 10, Oct. 2001, pp. 2065-2080.
[100] K. -A. Wen, A. -Y. Chen, Y. -J. Lan, J. -L. Lin and C. -H. Lin, “Three-dimensional PAC video codec for wireless data transmission,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 8, Dec. 2000, pp. 1455-1470.
[101] F. C. M. Martins and J. M. F. Moura, “Video representation with three-dimensional entities,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 1, Jan. 1998, pp. 71-85.
[102] I. Tinnirello and S. Choi, “Efficiency analysis of burst transmissions with block ack in contention-based 802.11e WLANs,” in Proc. IEEE ICC 2005, May 2005, Seoul, Korea, pp. 3455-3460.
[103] C. -Y. Hsu, J. -L. C. Wu and S. -T. Wang, “Capacity upgrading in mobile ad hoc access networks (MAHANs) using CSMA/CAPA,” in Proc. ACM MobiWac 2006, Oct. 2006, Torremolinos, Malaga, Spain, pp. 28-34.
[104] ASTM E2213-03, “Standard specification for telecommunications and information exchange between roadside and vehicle systems — 5 GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications,” ASTM Int’l., July 2003.
[105] E. Gelenbe, “Users and services in intelligent networks,” IEE Proceedings Intelligent Transport Systems, vol. 153, no. 3, Sept. 2006, pp. 213-220.
[106] L. Bononi, M. Di Felice, M. Bertini and E. Croci, “Parallel and distributed simulation of wireless vehicular ad hoc networks,” in Proc. ACM MSWiM 2006, Oct. 2006, Terromolinos, Spain, pp.28-35.
[107] T. Leinmuller, E. Schoch and F. Kargl, “Position verification approaches for vehicular ad hoc networks,” IEEE Wireless Communications, vol. 13, no. 5, Oct. 2006, pp. 16-21.
[108] J. Ott and D. Kutscher, “Drive-thru Internet: IEEE 802.11b for "automobile" users,” in Proc. IEEE INFOCOM 2004, Mar. 2004, Hong Kong, vol. 1, pp. 362-373.
[109] K. -D. Lin and J. -F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Communications, vol. 9, no. 1, Feb. 2002, pp. 84-89.
[110] 3GPP Technical Specification Group Services and System Aspects, IP Multimedia Subsystem (IMS), Stage 2, 3GPP TS 23.228 v 7.6.0 (2006-12).
[111] S. Boyd, A. Ghosh B. Prabhakar and D. Shah, “Randomized gossip algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6, June 2006, pp. 2508-2530.
[112] C. -W. Yi, P. -J. Wan, X. -Y. Li and O. Frieder, “Asymptotic distribution of the number of isolated nodes in wireless ad hoc networks with Bernoulli nodes,” IEEE Transactions on Communications, vol. 54, no. 3, Mar. 2006, pp. 510-517.
[113] M. Desai and D. Manjunath, “On range matrices and wireless networks in d dimensions,” in Proc. WIPOT 2005, Apr. 2005, Trentino, Italy, pp. 190-196.
[114] M. Desai and D. Manjunath, “On the connectivity in finite ad hoc networks,” IEEE Communications Letters, vol. 6, no. 10, Oct. 2002, pp. 437-439.
[115] A. D. Gore, “Comments on ‘on the connectivity in finite ad hoc networks’,” IEEE Communications Letters, vol. 10, no. 2, Feb. 2006, pp. 88-90.
[116] A. D. Gore, “Correction to ‘Comments on ‘on the connectivity in finite ad hoc networks’,” IEEE Communications Letters, vol. 10, no. 5, May 2006, p.359.
[117] C. H. Foh, G. Liu, B. S. Lee, B. -C. Seet, K. -J. Wong and C. P. Fu, “Network connectivity of one-dimensional MANETs with random waypoint movement,” IEEE Communications Letters, vol. 9, no. 1, Jan. 2005, pp. 31-33.

QR CODE