簡易檢索 / 詳目顯示

研究生: Le Thi Hong Hanh
Le Thi Hong Hanh
論文名稱: Amorphous cobalt-cerium binary metal oxides for highly efficient and selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran
Amorphous cobalt-cerium binary metal oxides for highly efficient and selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 張家耀
Jia-Yaw Chang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 85/7
中文關鍵詞: 5-hydroxymethylfurfural2,5-diformylfuranamorphous metal oxidesselective electrooxidationpH effect
外文關鍵詞: 5-hydroxymethylfurfural, 2,5-diformylfuran, amorphous metal oxides, selective electrooxidation, pH effect
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    5-羥甲基糠醛(5-hydroxymethylfurfural,HMF)來自纖維素生物質,本身的應用有限,甚至被認為對人類有毒或致癌。然而,HMF能夠反應成實用且高經濟附加價值產物,尤其是2,5-二甲酰呋喃(2,5-diformylfuran,DFF)。本篇為首次使用非晶相Co10-aCeaOx (“a”為鈰的原子比例)於DFF高選擇性的研究。此外,本研究深入探討了觸媒特性及反應參數與反應路徑之間的關係,並提出HMF的可能氧化反應路徑。本篇研究透過光化學金屬有機沉積製備出的非晶相Co10-aCeaOx在HMF催化反應上展現優異的性能,其電流表現是CoOx的1.35倍。本研究由Operando Raman光譜實驗中證實鈰的電子結構能使Co10-aCeaOx的鈷被提升到更高的氧化態,而高氧化態的鈷通常被認為是HMF氧化的活性位點。值得一提的是,本篇研究發現氧化產物的選擇性極大程度上取決於電解液的酸鹼值和施加的電位,在強鹼性環境(pH13)中發現5-甲酰基-2-呋喃甲酸 (5-formyl-2-furancarboxylic acid,FFCA) 為主要產物,選擇性在所有產物中約佔60%。然而,當pH從13降到 7.0 時, DFF變成了主要產品,選擇性為79%。此外,透過調整施加電位, DFF的選擇性從60%到達92%。
    中文關鍵詞: 5-羥甲基糠醛、2,5-二甲酰呋喃、非晶相金屬氧化物、選擇性電催化、酸鹼值影響


    Abstract
    5-hydroxymethylfurfural (HMF), derived from cellulosic biomass, has limiting applications and is even considered toxic or carcinogenic to humans. However, HMF has emerged as a precursor chemical that can be converted into high-value and useful compounds, especially 2,5-diformylfuran (DFF). Herein, this study reports for the first time using amorphous Co10-aCeaOx (“a” is the nominal atomic ratio of Ce) for high selectivity of DFF. Besides, the oxidation reaction pathway of HMF is also systematically studied. Amorphous Co10-aCeaOx obtained by photochemical metal-organic deposition exhibits an outstanding catalytic HMF oxidation performance, with the recorded current is 1.35 times over the value of CoOx. Operando Raman spectroscopy confirms the influence in the electronic structure of Ce on Co10-aCeaOx by promoting Co to the higher oxidation states, which are usually considered as the active sites for HMF oxidation. Interestingly, it is found that the selectivity of oxidative products strongly depends on the pH of the electrolyte and the applied potential. In strong alkaline media (pH 13.0), 5-formyl-2-furancarboxylic acid (FFCA) is found to be the main product that contributes the selectivity of 60% among all oxidative products. However, as pH decreases from 13.0 to 7.0, DFF turns to be the dominant product with a selectivity of 79%. Additionally, DFF could be produced with the selectivity of 60% ̴ 92% by adjusting applied potential. This study provides a deep understanding of the catalyst property, the relationship between reaction parameters and the reaction pathway. We, the early comers, report HMF electrooxidation in the neutral media, open the new route for electrocatalytic DFF production.
    Keyword: 5-hydroxymethylfurfural, 2,5-diformylfuran, amorphous metal oxides, selective electrooxidation, pH effect

    摘要 i Abstract ii Acknowledgment iii Table of Contents iv Index of Figures vii Index of Abbreviation xii Index of Tables xiii Index of appendix xiv Chapter 1 INTRODUCTION 1 Chapter 2 LITERATURE REVIEW 5 2.1 HMF (5-Hydroxymethylfurfural) 5 2.2 HMF Oxidation 6 2.2.1 HMF Oxidation Products 7 2.2.2 Method of HMF Oxidation 10 2.2.3 HMF electro-oxidation reaction 12 2.2.4 Metal-containing catalysts for DFF selectivity 13 2.2.5 The effect of electrolyte in HMF oxidation 14 2.3 Electrocatalyst – Cobalt base material 17 2.4 HMF degradation or polymerization 21 2.5 Method of HMF oxidation products analysis 24 2.6 Photochemical metal-organic deposition 25 Chapter 3 EXPERIMENTAL METHOD 27 3.1 Experimental Chemicals and Equipment 27 3.2 Catalyst synthesis 28 3.3 Characterization 29 3.4 Electrochemical measurement 30 3.5 Operando Raman spectroscopy 31 3.6 Product Analysis 32 3.6.1 High-performance liquid chromatography (HPLC) 32 3.6.2 Gas Chromatography (GC) 33 3.7 Electrochemistry principle 34 3.7.1 Linear sweep Voltammetry (LSV) 36 3.7.2 Chronoamperometry 36 Chapter 4 RESULTS AND DISCUSSION 37 4.1 Physicochemical characterization of the catalyst film 37 4.2 Evaluating the electrocatalytic HMF oxidation performance 39 4.3 Reasons for HMF catalytic performance the enhancement of Co8Ce2Ox 45 4.3.1 X-ray photoelectron spectroscopy 45 4.3.2 Operando Raman Spectroscopy 47 4.4 The influence of reaction conditions on the HMFOR performance of Co8Ce2Ox 50 4.4.1 The influence of pH on the reaction pathway 50 4.4.2 Effects of applied potential 55 4.4.3 The relationship of electrolyte’s anion in the reaction pathway 59 4.4.4 Effect of HMF concentration 62 4.5 Stability of catalyst investigation 66 4.6 Propose the reaction pathway 70 CONCLUSIONS 72 REFERENCES 74 APPENDIX 86

    REFERENCES
    [1] F. Nocito, M. Ventura, M. Aresta, A. Dibenedetto, Selective Oxidation of 5-(Hydroxymethyl) furfural to DFF Using Water as Solvent and Oxygen as Oxidant with Earth-Crust-Abundant Mixed Oxides, ACS omega, 3 (2018) 18724-18729.
    [2] E. Capuano, V. Fogliano, Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies, LWT-food science and technology, 44 (2011) 793-810.
    [3] A.A. Rosatella, S.P. Simeonov, R.F. Frade, C.A. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem., 13 (2011) 754-793.
    [4] J. Ma, Z. Du, J. Xu, Q. Chu, Y. Pang, Efficient aerobic oxidation of 5‐hydroxymethylfurfural to 2, 5‐diformylfuran, and synthesis of a fluorescent material, ChemSusChem, 4 (2011) 51-54.
    [5] J. Nie, H. Liu, Aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported vanadium oxide catalysts: Structural effect and reaction mechanism, Pure Appl. Chem., 84 (2011) 765-777.
    [6] O.C. Navarro, A.C. Canos, S.I. Chornet, Chemicals from biomass: Aerobic oxidation of 5-hydroxymethyl-2-furaldehyde into diformylfurane catalyzed by immobilized vanadyl-pyridine complexes on polymeric and organofunctionalized mesoporous supports, Top. Catal., 52 (2009) 304-314.
    [7] C. Carlini, P. Patrono, A.M.R. Galletti, G. Sbrana, V. Zima, Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2, 5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate, Appl. Catal., A., 289 (2005) 197-204.
    [8] C. Moreau, R. Durand, C. Pourcheron, D. Tichit, Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts, Stud. Surf. Sci. Catal., Elsevier1997, pp. 399-406.
    [9] A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, One-pot synthesis of 2, 5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts, ACS Catal, 1 (2011) 1562-1565.
    [10] Z.-Z. Yang, J. Deng, T. Pan, Q.-X. Guo, Y. Fu, A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe 3 O 4-SBA-SO 3 H and K-OMS-2, Green Chem., 14 (2012) 2986-2989.
    [11] J.R. Parker, S. Singh, G. Prickril, W. Chan, Integrated collaborative user interface for a document editor program, Google Patents, 2011.
    [12] K.R. Vuyyuru, P. Strasser, Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis, Catal. Today, 195 (2012) 144-154.
    [13] W. Yang, X. Wang, S. Song, H. Zhang, Syntheses and applications of noble-metal-free CeO2-based mixed-oxide nanocatalysts, Chem, 5 (2019) 1743-1774.
    [14] J.W.D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic, T.F. Jaramillo, Gold-supported cerium-doped NiO x catalysts for water oxidation, Nat., 1 (2016) 1-8.
    [15] L. De Faria, J. Boodts, S. Trasatti, Electrocatalytic properties of ternary oxide mixtures of composition Ru 0.3 Ti (0.7− x) Ce x O 2: oxygen evolution from acidic solution, J. Appl. Electrochem., 26 (1996) 1195-1199.
    [16] M. Favaro, W.S. Drisdell, M.A. Marcus, J.M. Gregoire, E.J. Crumlin, J.A. Haber, J. Yano, An operando investigation of (Ni–Fe–Co–Ce) O x system as highly efficient electrocatalyst for oxygen evolution reaction, ACS Catal, 7 (2017) 1248-1258.
    [17] K. Yu, L.L. Lou, S. Liu, W. Zhou, Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts, Adv. Sci. Lett, 7 (2020) 1901970.
    [18] L. Pan, Q. Wang, Y. Li, C. Zhang, Amorphous cobalt-cerium binary metal oxides as high performance electrocatalyst for oxygen evolution reaction, J. Catal., 384 (2020) 14-21.
    [19] Y. Liu, C. Ma, Q. Zhang, W. Wang, P. Pan, L. Gu, D. Xu, J. Bao, Z. Dai, 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids, Adv. Mater., 31 (2019) 1900062.
    [20] X. Han, H. Sheng, C. Yu, T.W. Walker, G.W. Huber, J. Qiu, S. Jin, Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts, ACS Catal, 10 (2020) 6741-6752.
    [21] A. Ashok, A. Kumar, Ag/Co3O4 as an effective catalyst for glycerol electro-oxidation in alkaline medium, Int. J. Hydrogen Energy, 46 (2021) 4788-4797.
    [22] A.V. Munde, B.B. Mulik, P.P. Chavan, V.S. Sapner, S.S. Narwade, S.M. Mali, B.R. Sathe, Electrocatalytic Ethanol Oxidation on Cobalt–Bismuth Nanoparticle-Decorated Reduced Graphene Oxide (Co–Bi@ rGO): Reaction Pathway Investigation toward Direct Ethanol Fuel Cells, J. Phys. Chem. C, 125 (2021) 2345-2356.
    [23] J. Xu, X. Liu, Y. Chen, Y. Zhou, T. Lu, Y. Tang, Platinum–cobalt alloy networks for methanol oxidation electrocatalysis, J. Mater. Chem., 22 (2012) 23659-23667.
    [24] N. Jiang, B. You, R. Boonstra, I.M. Terrero Rodriguez, Y. Sun, Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co–P-derived electrocatalysts, ACS Energy Lett., 1 (2016) 386-390.
    [25] J. Weidner, S. Barwe, K. Sliozberg, S. Piontek, J. Masa, U.-P. Apfel, W. Schuhmann, Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting, Beilstein J. Org. Chem., 14 (2018) 1436-1445.
    [26] Z. Zhou, C. Chen, M. Gao, B. Xia, J. Zhang, In situ anchoring of a Co 3 O 4 nanowire on nickel foam: an outstanding bifunctional catalyst for energy-saving simultaneous reactions, Green Chem., 21 (2019) 6699-6706.
    [27] M.J. Kang, H. Park, J. Jegal, S.Y. Hwang, Y.S. Kang, H.G. Cha, Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media, Applied Catalysis B: Environmental, 242 (2019) 85-91.
    [28] L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li, L. Niu, Hierarchical Nickel–Cobalt‐Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals, ChemSusChem, 11 (2018) 2547-2553.
    [29] B.J. Taitt, D.-H. Nam, K.-S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid, ACS Catal, 9 (2018) 660-670.
    [30] W. Cai, R. Chen, H. Yang, H.B. Tao, H.-Y. Wang, J. Gao, W. Liu, S. Liu, S.-F. Hung, B. Liu, Amorphous vs Crystalline in Water Oxidation Catalysis: A Case Study of NiFe alloy, Nano Lett., (2020).
    [31] C. Zhang, R.D. Fagan, R.D. Smith, S.A. Moore, C.P. Berlinguette, S. Trudel, Mapping the performance of amorphous ternary metal oxide water oxidation catalysts containing aluminium, Journal of Materials Chemistry A, 3 (2015) 756-761.
    [32] R.D. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel, J. Am. Chem. Soc., 135 (2013) 11580-11586.
    [33] A.F.V. Grote, B. Tollens, Untersuchungen über kohlenhydrate. I. Ueber die bei Einwirkung von Schwefelsäure auf Zucker entstehende Säure (Levulinsäure), Justus Liebigs Annalen der Chemie, 175 (1875) 181-204.
    [34] R. Weingarten, A. Rodriguez‐Beuerman, F. Cao, J.S. Luterbacher, D.M. Alonso, J.A. Dumesic, G.W. Huber, Selective conversion of cellulose to hydroxymethylfurfural in polar aprotic solvents, ChemCatChem, 6 (2014) 2229-2234.
    [35] J. Lewkowski, Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives, (2001).
    [36] L. Hu, G. Zhao, W. Hao, X. Tang, Y. Sun, L. Lin, S. Liu, Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes, Rsc Advances, 2 (2012) 11184-11206.
    [37] D.-H. Nam, B.J. Taitt, K.-S. Choi, Copper-based catalytic anodes to produce 2, 5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid, ACS Catal, 8 (2018) 1197-1206.
    [38] T. Buntara, S. Noel, P.H. Phua, I. Melián‐Cabrera, J.G. de Vries, H.J. Heeres, Caprolactam from renewable resources: catalytic conversion of 5‐hydroxymethylfurfural into caprolactone, Angewandte Chemie, 123 (2011) 7221-7225.
    [39] X. Tang, J. Wei, N. Ding, Y. Sun, X. Zeng, L. Hu, S. Liu, T. Lei, L. Lin, Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels, Renewable and Sustainable Energy Reviews, 77 (2017) 287-296.
    [40] J. Ma, Z. Sun, Mutual information is copula entropy, Tsinghua Science & Technology, 16 (2011) 51-54.
    [41] N.-T. Le, P. Lakshmanan, K. Cho, Y. Han, H. Kim, Selective oxidation of 5-hydroxymethyl-2-furfural into 2, 5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts, Applied Catalysis A: General, 464 (2013) 305-312.
    [42] F. Neaţu, N. Petrea, R. Petre, V. Somoghi, M. Florea, V. Parvulescu, Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts, Catalysis Today, 278 (2016) 66-73.
    [43] M. Del Poeta, W.A. Schell, C.C. Dykstra, S. Jones, R.R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin, Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents, Antimicrobial agents and chemotherapy, 42 (1998) 2495-2502.
    [44] X. Tong, Y. Sun, X. Bai, Y. Li, Highly efficient aerobic oxidation of biomass-derived 5-hydroxymethyl furfural to produce 2, 5-diformylfuran in the presence of copper salts, Rsc Advances, 4 (2014) 44307-44311.
    [45] G.A. Halliday, R.J. Young, V.V. Grushin, One-pot, two-step, practical catalytic synthesis of 2, 5-diformylfuran from fructose, Organic letters, 5 (2003) 2003-2005.
    [46] H. Hirai, Oligomers from hydroxymethylfurancarboxylic acid, Journal of Macromolecular Science—Chemistry, 21 (1984) 1165-1179.
    [47] A.C. Braisted, J.D. Oslob, W.L. Delano, J. Hyde, R.S. McDowell, N. Waal, C. Yu, M.R. Arkin, B.C. Raimundo, Discovery of a potent small molecule IL-2 inhibitor through fragment assembly, Journal of the American Chemical Society, 125 (2003) 3714-3715.
    [48] T.M. Masikhwa, M.J. Madito, D. Momodu, A. Bello, J.K. Dangbegnon, N. Manyala, High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene, J. Colloid Interface Sci., 484 (2016) 77-85.
    [49] Y.Y. Gorbanev, S.K. Klitgaard, J.M. Woodley, C.H. Christensen, A. Riisager, Gold‐catalyzed aerobic oxidation of 5‐hydroxymethylfurfural in water at ambient temperature, ChemSusChem: Chemistry & Sustainability Energy & Materials, 2 (2009) 672-675.
    [50] M. Haruta, When gold is not noble: catalysis by nanoparticles, The chemical record, 3 (2003) 75-87.
    [51] S. Hameed, L. Lin, A. Wang, W. Luo, Recent Developments in Metal-Based Catalysts for the Catalytic Aerobic Oxidation of 5-Hydroxymethyl-Furfural to 2, 5-Furandicarboxylic Acid, Catalysts, 10 (2020) 120.
    [52] H.A. Rass, N. Essayem, M. Besson, Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion, Green chemistry, 15 (2013) 2240-2251.
    [53] L. Ardemani, G. Cibin, A.J. Dent, M.A. Isaacs, G. Kyriakou, A.F. Lee, C.M. Parlett, S.A. Parry, K. Wilson, Solid base catalysed 5-HMF oxidation to 2, 5-FDCA over Au/hydrotalcites: fact or fiction?, Chemical science, 6 (2015) 4940-4945.
    [54] S.E. Davis, L.R. Houk, E.C. Tamargo, A.K. Datye, R.J. Davis, Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts, Catalysis Today, 160 (2011) 55-60.
    [55] S.M. Kim, Y.S. Kim, D.W. Kim, J.W. Yang, Transition metal-free, NaO t Bu-O 2-mediated one-pot cascade oxidation of allylic alcohols to α, β-unsaturated carboxylic acids, Green chemistry, 14 (2012) 2996-2998.
    [56] L. Zhang, X. Luo, Y. Li, A new approach for the aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid without using transition metal catalysts, Journal of energy chemistry, 27 (2018) 243-249.
    [57] S. Yurdakal, B.S. Tek, O.u. Alagöz, V. Augugliaro, V. Loddo, G. Palmisano, L. Palmisano, Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2, 5-furandicarbaldehyde in water by using anatase, rutile, and brookite TiO2 nanoparticles, ACS Sustainable Chemistry & Engineering, 1 (2013) 456-461.
    [58] V. Augugliaro, M. Bellardita, V. Loddo, G. Palmisano, L. Palmisano, S. Yurdakal, Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13 (2012) 224-245.
    [59] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, Journal of photochemistry and photobiology C: Photochemistry reviews, 9 (2008) 1-12.
    [60] J. Carbajo, A. Tolosana-Moranchel, J. Casas, M. Faraldos, A. Bahamonde, Analysis of photoefficiency in TiO2 aqueous suspensions: effect of titania hydrodynamic particle size and catalyst loading on their optical properties, Applied Catalysis B: Environmental, 221 (2018) 1-8.
    [61] A. Lolli, V. Maslova, D. Bonincontro, F. Basile, S. Ortelli, S. Albonetti, Selective oxidation of HMF via catalytic and photocatalytic processes using metal-supported catalysts, Molecules, 23 (2018) 2792.
    [62] M.E. Zakrzewska, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquid-mediated formation of 5-hydroxymethylfurfural A promising biomass-derived building block, Chemical reviews, 111 (2011) 397-417.
    [63] W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G.W. Huber, Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts, ACS Catalysis, 8 (2018) 5533-5541.
    [64] A. Macfarlane, M. Mai, J. Kadla, Bio-based chemicals from biorefining: Lignin conversion and utilisation, Advances in Biorefineries, Elsevier2014, pp. 659-692.
    [65] R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chemical Society Reviews, 43 (2014) 2492-2521.
    [66] H. Awad, N.A. Galwa, Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors, Chemosphere, 61 (2005) 1327-1335.
    [67] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions, Chemical Society Reviews, 44 (2015) 2060-2086.
    [68] T. Xiang, X. Liu, P. Yi, M. Guo, Y. Chen, C. Wesdemiotis, J. Xu, Y. Pang, Schiff base polymers derived from 2, 5‐diformylfuran, Polymer international, 62 (2013) 1517-1523.
    [69] K.T. Hopkins, W.D. Wilson, B.C. Bender, D.R. McCurdy, J.E. Hall, R.R. Tidwell, A. Kumar, M. Bajic, D.W. Boykin, Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents, Journal of medicinal chemistry, 41 (1998) 3872-3878.
    [70] A.S. Amarasekara, D. Green, L.D. Williams, Renewable resources based polymers: Synthesis and characterization of 2, 5-diformylfuran–urea resin, Eur. Polym. J., 45 (2009) 595-598.
    [71] D.T. Richter, T.D. Lash, Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4+ 1’synthesis of sapphyrins, Tetrahedron letters, 40 (1999) 6735-6738.
    [72] Z. Yang, W. Qi, R. Su, Z. He, Selective synthesis of 2, 5-diformylfuran and 2, 5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose catalyzed by magnetically separable catalysts, Energy & Fuels, 31 (2017) 533-541.
    [73] G.D. Yadav, R.V. Sharma, Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst, Applied Catalysis B: Environmental, 147 (2014) 293-301.
    [74] B. Liu, Z. Zhang, K. Lv, K. Deng, H. Duan, Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide, Applied Catalysis A: General, 472 (2014) 64-71.
    [75] L. Ning, S. Liao, Y. Sun, L. Yu, X. Tong, The efficient oxidation of biomass-derived 5-hydroxymethyl furfural to produce 2, 5-diformylfuran over supported cobalt catalysts, Waste and Biomass Valorization, 9 (2018) 95-101.
    [76] S. Wang, Z. Zhang, B. Liu, Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3O4–CoO x magnetite nanocatalyst, ACS Sustainable Chemistry & Engineering, 3 (2015) 406-412.
    [77] Y. Wang, B. Liu, K. Huang, Z. Zhang, Aerobic oxidation of biomass-derived 5-(hydroxymethyl) furfural into 2, 5-diformylfuran catalyzed by the trimetallic mixed oxide (Co–Ce–Ru), Industrial & Engineering Chemistry Research, 53 (2014) 1313-1319.
    [78] P. Vinke, vd, W. Van der Poel, H. Van Bekkum, On the oxygen tolerance of noble metal catalysts in liquid phase alcohol oxidations the influence of the support on catalyst deactivation, Stud. Surf. Sci. Catal., Elsevier1991, pp. 385-394.
    [79] M.J. Kang, H.J. Yu, H.S. Kim, H.G. Cha, Deep eutectic solvent stabilised Co–P films for electrocatalytic oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid, New J. Chem., 44 (2020) 14239-14245.
    [80] M. Cai, Y. Zhang, Y. Zhao, Q. Liu, Y. Li, G. Li, Two-dimensional metal–organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl) furfural (HMF) valorization, Journal of Materials Chemistry A, 8 (2020) 20386-20392.
    [81] X. Huang, J. Song, M. Hua, Z. Xie, S. Liu, T. Wu, G. Yang, B. Han, Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies, Green Chem., 22 (2020) 843-849.
    [82] Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Y. Liu, Y. Li, N. Zhang, W. Chen, L. Zhou, H. Lin, Hierarchically nanostructured NiO-Co 3 O 4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural, Science China Chemistry, 63 (2020) 980-986.
    [83] X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu, J.-L. Luo, Constructing multifunctional ‘Nanoplatelet-on-Nanoarray’electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production, Applied Catalysis B: Environmental, 278 (2020) 119339.
    [84] C.H. van Oversteeg, H.Q. Doan, F.M. de Groot, T. Cuk, In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts, Chem. Soc. Rev., 46 (2017) 102-125.
    [85] S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhöfer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Electrocatalytic Oxidation of 5‐(Hydroxymethyl) furfural Using High‐Surface‐Area Nickel Boride, Angew. Chem. Int. Ed., 57 (2018) 11460-11464.
    [86] C. Zhang, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: survey of amorphous binary metal oxide films containing lanthanum and late 3d transition metals, Eur. J. Inorg. Chem., 2014 (2014) 660-664.
    [87] C.-W. Chen, C.-Y. Chiang, Molybdenum-containing amorphous metal oxide catalysts for oxygen evolution reaction, Int. J. Hydrogen Energy, 42 (2017) 29773-29780.
    [88] C. Zhang, C.P. Berlinguette, S. Trudel, Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction, Chem. Commun., 52 (2016) 1513-1516.
    [89] J. Colomer-Farrarons, P.L. Miribel-Català, A.I. Rodríguez-Villarreal, J. Samitier, Portable bio-devices: design of electrochemical instruments from miniaturized to implantable devices, New Perspectives in Biosensors Technology and Applications, IntechOpen2011.
    [90] B. Yilmaz, S. Kaban, B. Akcay, Anodic oxidation of etodolac and its linear sweep, square wave and differential pulse voltammetric determination in pharmaceuticals, Indian journal of pharmaceutical sciences, 77 (2015) 413.
    [91] V. Hadjiev, M. Iliev, I. Vergilov, The raman spectra of Co3O4, J. Phys. C., 21 (1988) L199.
    [92] J. Yang, H. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs, J. Phys. Chem. C, 114 (2010) 111-119.
    [93] E.K. Goharshadi, S. Samiee, P. Nancarrow, Fabrication of cerium oxide nanoparticles: characterization and optical properties, J. Colloid Interface Sci., 356 (2011) 473-480.
    [94] J. McBride, K. Hass, B. Poindexter, W. Weber, Raman and x‐ray studies of Ce1− x RE x O2− y, where RE= La, Pr, Nd, Eu, Gd, and Tb, J. Appl. Phys., 76 (1994) 2435-2441.
    [95] B. You, N. Jiang, X. Liu, Y. Sun, Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble‐Metal‐Free Bifunctional Electrocatalyst, Angew. Chem., 128 (2016) 10067-10071.
    [96] B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization, J. Am. Chem. Soc., 138 (2016) 13639-13646.
    [97] N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin, S. Wang, Electrochemical Oxidation of 5‐Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy, Angew. Chem., 131 (2019) 16042-16050.
    [98] B.J. Tan, K.J. Klabunde, P.M. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica, J. Am. Chem. Soc., 113 (1991) 855-861.
    [99] E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz), Surf. Interface Anal., 40 (2008) 264-267.
    [100] P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng, Y. Zhang, Y. Kuang, Y. Li, Q. Ma, Z. Feng, Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides, Nat. Commun., 10 (2019) 1-11.
    [101] Y. Wen, Z. Wei, J. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, Z. Li, Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution, Journal of Energy Chemistry, 52 (2021) 412-420.
    [102] T.-G. Vo, K.-F. Chang, C.-Y. Chiang, Valence modulation on zinc-cobalt-vanadium layered double hydroxide nanosheet for accelerating BiVO4 photoelectrochemical water oxidation, J. Catal., 391 (2020) 336-345.
    [103] H. Xu, J. Cao, C. Shan, B. Wang, P. Xi, W. Liu, Y. Tang, MOF‐derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis, Angew. Chem., 130 (2018) 8790-8794.
    [104] Y.R. Zheng, M.R. Gao, Q. Gao, H.H. Li, J. Xu, Z.Y. Wu, S.H. Yu, An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation, Small, 11 (2015) 182-188.
    [105] J.-H. Kim, K. Shin, K. Kawashima, D.H. Youn, J. Lin, T.E. Hong, Y. Liu, B.R. Wygant, J. Wang, G. Henkelman, Enhanced activity promoted by CeO x on a CoO x electrocatalyst for the oxygen evolution reaction, ACS Catal, 8 (2018) 4257-4265.
    [106] H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H.M. Chen, B. Liu, In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4, J. Am. Chem. Soc., 138 (2016) 36-39.
    [107] B.S. Yeo, A.T. Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen, J. Am. Chem. Soc., 133 (2011) 5587-5593.
    [108] G. Simmons, E. Kellerman, H. Leidheiser Jr, In situ studies of the passivation and anodic oxidation of cobalt by emission Mössbauer spectroscopy: I. Theoretical background, experimental methods, and experimental results for borate solution (pH 8.5), J. Electrochem. Soc., 123 (1976) 1276.
    [109] A. Moysiadou, S. Lee, C.-S. Hsu, H.M. Chen, X. Hu, Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step, J. Am. Chem. Soc., 142 (2020) 11901-11914.
    [110] Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo, S. Shen, B.E. Koel, Reversible Structural Evolution of NiCoO x H y during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase, ACS Catal, 8 (2018) 1238-1247.
    [111] K. Lian, S. Thorpe, D. Kirk, The electrocatalytic activity of amorphous and crystalline Ni Co alloys on the oxygen evolution reaction, Electrochim. Acta, 37 (1992) 169-175.
    [112] N. Heidary, N. Kornienko, Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with operando surface-enhanced Raman spectroscopy, Chem., 11 (2020) 1798-1806.
    [113] B. Zhou, C.-L. Dong, Y.-C. Huang, N. Zhang, Y. Wu, Y. Lu, X. Yue, Z. Xiao, Y. Zou, S. Wang, Activity origin and alkalinity effect of electrocatalytic biomass oxidation on nickel nitride, Journal of Energy Chemistry, 61 (2021) 179-185.
    [114] S. Choi, M. Balamurugan, K.-G. Lee, K.H. Cho, S. Park, H. Seo, K.T. Nam, Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO2-Saturated Electrolyte for Paired Electrolysis, The journal of physical chemistry letters, 11 (2020) 2941-2948.

    無法下載圖示 全文公開日期 2026/08/11 (校內網路)
    全文公開日期 2026/08/11 (校外網路)
    全文公開日期 2026/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE