簡易檢索 / 詳目顯示

研究生: 陳信豪
Xin-Hao Chen
論文名稱: 利用側推分析建立RC建築層間位移比與損傷程度關係之探討
A discussion on establishing the relationship between the interstory drift ratio and damage degree of RC buildings using pushover analysis
指導教授: 許丁友
Ting-Yu Hsu
邱聰智
Tsung-Chih Chiou
口試委員: 許丁友
Ting-Yu Hsu
邱聰智
Tsung-Chih Chiou
廖文義
Wen-I Liao
黃尹男
Yin-Nan Huang
張家銘
Chia-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 層間位移比鋼筋混凝土震後損傷側推分析TEASPA
外文關鍵詞: Interstory drift ratio, Reinforced concrete, Post-Earthquake building damage state, Pushover analysis, TEASPA
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震一直以來都是造成建築物損害的主因,在每次地震後,民眾最為關心的議題之一即為建築物的損傷程度。目前最普遍的實際做法之一,係於建築物上安裝加速度計,根據建築物受震反應訊號換算最大層間位移比,並據以判斷損傷程度。
    然而,層間位移比與損傷程度的對應關係尚待釐清。目前大多採用的美國FEMA建議方式,其建築物損傷程度係根據震後建築物修復需花費之成本來定義,且未考量到台灣建築物的耐震設計不同,故其適用性有疑慮。本研究希望以民眾於震後的反應作為出發點,來定義損傷程度與層間位移比的關係。
    本研究使用國震中心TEASPA資料庫的實際RC建築物之ETABS模型,根據側推分析所得到之容量曲線,將降伏點、最大強度點、韌性用盡之點對應之層間變位比來定義安全、輕微損傷、嚴重損傷等損傷程度之界線,且提供在不同層級的損傷程度下建議民眾相對應的應變作為。例如當震後結構構件尚未發生裂縫,或者僅有少數構件產生輕微裂縫時,此時建築物應為安全,則民眾可以安心繼續使用建築物。此外,本研究並探討不同樓層之層間變位比分布情形,並據以提出儀器安裝樓層建議位置與數量,及對應之門檻值折減係數。


    Earthquakes have always been the main cause of damage to buildings. After each earthquake, one of the issues that people are most concerned about is the degree of damage to buildings. One of the most common practical methods at present is to install accelerometers on buildings, convert the maximum interstory drift ratio according to the earthquake response signal of the building, and judge the damage degree accordingly.
    However, the corresponding relationship between the interstory drift ratio and the damage degree remains to be clarified. At present, most of the methods recommended by the US FEMA are used. The degree of building damage is defined according to the cost of building repair after the earthquake, and the different seismic designs of buildings in Taiwan are not considered, so there are doubts about its applicability. This study hopes to define the relationship between the damage degree and the interstory drift ratio based on the post-earthquake response of the people.
    This study uses the ETABS model of the actual RC building in the TEASPA database of the NCREE, and according to the capacity curve obtained by the pushover analysis, defined safety, the slight damage state, and severe damage state by the interstory drift ratio corresponding to the yield point, the maximum base shear point, and the ultimate capacity point of the capacity curve. And provide the corresponding response actions for the public under different levels of damage degree. For example, when there are no cracks in the structural components after the earthquake, or only a few components have minor cracks, the building should be safe at this time, and the public can continue to use the building with peace of mind. In addition, this study also discusses the distribution of drift ratios between different floors, and based on this, proposes the recommended location and number of instrument installation floors, as well as the corresponding threshold reduction factor.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 層間位移比及其量測方式 3 1.2.2 FEMA地震損失估計方法 4 1.3 研究內容與架構 10 第二章 研究方法 12 2.1 臺灣結構耐震評估側推分析法(TEASPA)簡介 13 2.2 側推分析簡介 18 2.3 建立損傷程度門檻值與折減係數之流程 23 第三章 實際RC建築物側推分析 24 3.1 建築物模型資料介紹 24 3.2 ETABS側推分析結果 25 3.2.1 容量曲線資料篩選 26 3.2.2 損傷程度強度點對應層間位移比分析結果 27 3.2.3 建立各損傷程度對應層間位移比對照表 31 3.3 層間位移比分析結果 34 3.3.1 層間位移比依樓層分布之種類 34 3.3.2 感測器裝設方案與折減係數之建議 43 3.3.3 小結 69 第四章 實際案例分析與探討 72 4.1 中興大學土環大樓分析結果 72 4.1.1 921集集地震歷時分析結果 72 4.1.2 實際震後損壞評估與探討 73 4.1.3 小結 75 4.2 台科大第三學生宿舍分析結果 76 4.2.1 實際地震歷時分析結果 78 4.2.2 側推分析與實際量測探討 82 4.3 花蓮昇園大樓分析結果 83 第五章 結論與未來展望 86 5.1 結論 86 5.2 未來展望 87 參考文獻 88

    [1] Federal Emergency Management Agency (FEMA)(2010), “HAZUS-MH MR5 Technical and User's Manual”, Washington, D.C., FEMA.
    [2] Park, J. W., Sim, S. H., Jung, H. J. and Spencer Jr, B. F. (2013). “Development of a Wireless Displacement Measurement System Using Acceleration Responses.” Sensors 13, 8377-92.
    [3] Trapani, D., Maroni, A., Debiasi, E. and Zonta, D. (2015). “Uncertainty Evaluation of After-Earthquake Damage Detection Strategy.” 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy. pp 125-130.
    [4] Chiou, T.C., and Hwang, S.J. (2017). “Verification on Seismic Rapid Evaluation Using the Building Data of the 2016 Meinong Taiwan Earthquake”, SIBE2017.
    [5] 簡文郁,連冠華,張毓文,鍾立來,黃世建(2008)。「校舍結構易損性與耐震性能標準研究」。中華民國第九屆結構工程研討會,L-0289。
    [6] 邱聰智,鍾立來,涂耀賢,賴昱志,曾建創,翁樸文,莊明介,葉勇凱,李其行,林敏郎,王佳憲,沈文成,蕭輔沛,薛強,黃世建(2020)。「台灣結構耐震評估與補強技術手冊 (TEASPA V4.0) 」。NCREE-20-005。
    [7] 林其璋,施詠陽(2003)。依強震記錄探討建築物動態特性及損害評估(I)。中央氣象局技術報告,MOTC-CWB-92-E10-4。
    [8] Skolnik, D. A. and Wallace, J. W. (2010). "Critical assessment of interstory drift measurements." Journal of structural engineering 136, (12), 1574-1584.
    [9] 姚昭智、林其璋、洪李陵、朱世禹、吳慶餘、吳建文(2005)。「建築物在牆震時之反應預估模式研究(II)」。九十四年度防救災專案計畫。
    [10] 社團法人臺灣省土木技師公會(2021)。「技師報 No.1273」。

    無法下載圖示 全文公開日期 2027/09/20 (校內網路)
    全文公開日期 2027/09/20 (校外網路)
    全文公開日期 2027/09/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE