簡易檢索 / 詳目顯示

研究生: 王炫程
Hsuan-Cheng Wang
論文名稱: 應用微接觸轉印技術及導電墨水製作導線於玻璃基板
Fabrication of Conductive Lines on Glass by Using Micro Contact Printing and Conductive Ink
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 鄭逸琳
Yih-Lin Cheng
張天立
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 120
中文關鍵詞: 大氣電漿微接觸轉印奈米銀粉PEDOT:PSS石墨烯
外文關鍵詞: atmospheric plasma, micro contact printing, nano silver, PEDOT: PSS, graphene
相關次數: 點閱:273下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以微接觸轉印技術及導電墨水製作導線,並搭配大氣電漿進行PDMS表面親水前處理,與微接觸轉印形成一連續製程。此轉印製程主要特色為製程單純、快速且無需昂貴設備,可直接製作無殘留層之導線於基材上。
研究發現,經由大氣電漿親水處理之PDMS表面水接觸角可由原本的110°降到約1°,藉由提高PDMS表面能可大幅改善其沾墨結果。而隨著靜置於空氣中不同時間及不同溫度下可使PDMS恢復其疏水特性,使其水接觸角提高,並藉由不同製程參數如轉印時間、溫度、壓力,可成功將奈米銀粉導線及PEDOT:PSS摻雜石墨烯導線轉印至玻璃上。實驗並利用X光光電子能譜儀分析,發現PDMS經由大氣電漿處理後表面產生了C-O和O-C=O等親水性官能基,而隨著靜置於室溫下空氣中的時間增長,所產生的親水性官能基會逐漸消失。最後,經由不同熱處理溫度及時間對銀粉進行燒結,發現當銀粉導線線寬66.9µm、厚度170.8nm、量測距離0.1cm,熱處理為200°C、40mins時,得到的電阻率為8.56x10e-6Ω・cm;而當PEDOT:PSS摻雜石墨烯導線線寬136.1µm、厚度262.2nm、量測距離0.1cm時,電阻率為2.39x10e-3Ω・cm。


This study is devoted to fabricate conductive lines by micro contact printing with conductive ink, and PDMS pre-treatment by atmospheric plasma which can be a successive process with micro contact printing. The features of this printing technology are as follow: simple, fast, no expensive equipment requirement, capable of fabricating conductive lines with no residua layer on substrate.
In the experiment, PDMS can soak inks uniformly by increasing its surface energy when surface contact angles of PDMS decrease from 110°to1°C by atmospheric plasma treatment. Besides, conductive lines made by nano silver ink and graphene embedded with PEDOT:PSS can be successfully transferred to glass substrate under different imprinting time, temperature, and pressure with hydrophobic property recovery and surface contact angles increasing of PDMS as a result from being laid in air under different aging time and temperature. Surface analyses by X-ray Photoelectron Spectroscopy was also studied and indicated that C-O and O-C=O functional groups were formed after PDMS atmospheric plasma treatment and disappeared gradually by being laid in air under different aging time. The resistivity of nano silver line with 66.9µm width, 170.8nm thickness, 0.1cm measured distance is 8.56x10e-6Ω・cm when baking temperature is 200°C and baking time is 40mins; the resistivity of graphene embedded with PEDOT: PSS line with 136.1µm width,262.2nm thickness, 0.1cm measured distance is 2.39x10e-3Ω・cm.

摘要I AbstractII 誌謝III 目錄IV 圖目錄VII 表目錄XIII 第一章、緒論1 1.1 前言1 1.2 研究動機與目的1 第二章、文獻回顧3 2.1 微結構轉印3 2.2 氣體輔助轉印11 2.3 轉印材料17 2.4 表面親疏水處理25 2.4.1 表面抗沾黏處理25 2.4.2 PDMS表面親水處理27 2.5 X光光電子能譜儀分析29 第三章、微接觸轉印技術開發33 3.1 聚二甲基矽氧烷介紹33 3.2 PDMS軟模大氣電漿親水處理35 3.3 微接觸轉印製程介紹38 3.4 微接觸轉印機制介紹39 3.5 實驗使用材料之表面能探討40 3.6 加壓方法42 3.7 轉印材料46 3.8 轉印用模具48 第四章、實驗結果與討論50 4.1 PDMS軟模大氣電漿親水處理50 4.1.1 大氣電漿表面處理參數設計及表面濕潤性量測51 4.1.2 時間及溫度對PDMS軟模親水性之影響54 4.1.3 PDMS經大氣電漿處理表面化學成份變化59 4.2 奈米銀粉墨水轉印製程參數探討70 4.2.1 墨水旋塗問題71 4.2.2 轉印時間73 4.2.3 轉印溫度76 4.2.4 轉印壓力82 4.3 PEDOT:PSS摻雜石墨烯轉印製程參數探討86 4.3.1 墨水旋塗問題86 4.3.2 轉印時間89 4.3.3 轉印溫度98 4.3.4 轉印壓力101 4.4 電性探討105 4.4.1 電阻基本概念105 4.4.2 電阻率基本概念105 4.4.3 PEDOT:PSS摻雜石墨烯電性量測107 4.4.4 奈米銀粉墨水燒結條件研究107 第五章、結論與未來展望112 5.1 結論112 5.2 未來展望113 參考文獻116

1.B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P Schmidt- Winkel. R. Stutz and H. Wolf, “Printing meets lithography: Soft
approaches to high-resolution patterning”, IBM J. Res. & Dev, Vol. 45, pp. 697-719, 2001.
2.H. Kipphan, “Handbuch der Printmedien: Technologien und
Produktionsverfahren”, Springer, 2000.
3.J. M. Adams, D. D. Faux, and J. J. Rieber, “Printing Technology”, 4th ed., Delmare Publishers, 1996.
4.E. Cullmann, “Excimer Laser Applications in Contact Printing”, Semicond. Int, Vol. 41, pp. 332-334, 1985.
5.H. Huber, U. Scheunemann, E. Cullmann, W.Rohrmoser, “Application of X-ray Steppers Using Optical Alignment”, Solid State Technol, Vol. 33, pp. 59, 1990.
6.S. K. Ghandi, “VLSI Fabrication Principles”, John Wiley & Sons, 1983.
7.G. L. T. Chiu, J. M. Shaw, “Optical Lithography: Introduction”, IBM J. Res. & Dev, Vol. 41, pp. 3-6, 1997.
8.A. Kumar, G. M. Whitesides, “Features of Gold Having
Micrometer to Centimeter Dimensions Can Be Formed Through a Combination of Stamping with an Elastomeric Stamp and an Alkanethiol “Ink” Followed by Chemical Etching”, Appl. Phys. Lett, Vol. 63, pp. 2002-2004, 1993.
9.A. Kumar, N. L. Abbott, E. Kim, H. Biebuyck, and G. M. Whitesides, “Patterned Self-Assembled Monolayers and Meso-Scale Phenomena”, Acc. Chem. Res, Vol. 28, pp. 219-226, 1995.
10.Y Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin and John A.
Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Application in plastic electronics”, Appl. Phys. Lett, Vol. 81, pp. 562-564, 2002.
11.Ken-ichiro Nakamatsu, Katsuhiko Tone, Hideo Namatsu, Shinji Matsui, “Room-temperature nanocontact printing using soft template”, J. Vac. Sci. Technol. B, Vol. 24, pp. 195-199, 2006.
12.M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing”, Appl. Phys. Lett, Vol. 81, pp. 2094-2096, 2002
13.M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts, and L. W. Molenkamp, “Organic thin-film transistors fabricated by microcontact printing”, Appl. Phys. Lett, Vol. 84, pp. 1582-1584, 2004.
14.He Gao, Hua Tan, Wei Zhang, Keith Morton, and Stephen Y. Chou, “Air Cushion Press for Excellent Uniformity, High Yield, and Fast
Nanoimprint Across a 100 mm Field”, Nano Lett, Vol. 6, pp. 2438-2411, 2006.
15.Jer-Haur Chang, Fang-Sung Cheng, Chi-Chung Chao, Yung-Chun Weng, and Sen-Yeu Yang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces”, J. Vac. Sci. Technol. A, Vol. 23, pp. 1687, 2005.
16.Jun-ho Jeong, Ki-don Kim, Young-suk Sim,Hyonkee Sohn, Eung-sug Lee, “A step-and-repeat UV-nanoimprint lithography process using an elementwise patterned stamp”, Microelectron. Eng, Vol. 82, pp. 180-188, 2005.
17.Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, Vol. 321, pp. 385-388, 2008.
18.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, Vol. 320, pp.1308, 2008.
19.洪偉修教授,“世界上最薄的材料--石墨烯”,康熹文化事業股份有限公司,2009.
20.Dawen Li, L Jay Guo, “Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping”, Appl. Phys. Lett, Vol. 88, pp. 063513, 2006.
21.Atsushi Takakuwa, Mitsuhiro Ikawa, Mariko Fujita, Kiyoshi Yase, “Micropatterning of Electrodes by Microcontact Printing Method and Application to Thin Film Transistor Devices”, Jpn. J. Appl. Phys, Vol. 46, pp. 5960-5963, 2007.
22.Sankir, “Selective deposition of PEDOT/PSS on to flexible substrates and tailoring the electrical resistivity by post treatment”, Circuit World, Vol. 34, pp. 32-37, 2008.
23.Yanfei Xu, Yan Wang, Jiajie Liang, Yi Huang, Yanfeng Ma, Xiangjian Wan, and Yongsheng Chen, “A Hybrid Material of Graphene and Poly (3,4-ethyldioxythiophene)with High Conductivity, Flexibility, and Transparency”, Nano Res, Vol. 2, pp. 343-348, 2009.
24.S. Bittolo Bon, L. Valentini, J.M. Kenny, “Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites”, Chem. Phys. Lett, Vol. 494, pp. 264-268, 2010.
25.Fuller S, Wilhelm E J, Jacobson J M, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems”, J. Microelectromech. Syst, Vol.11, pp. 54,.2002.
26.Hsien-Hsueh Lee, Kan-Sen Chou1, Kuo-Cheng Huang, “Inkjet printing of nanosized silver colloids”, Nanotechnology, Vol. 16, pp. 2436-2441, 2005.
27.S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, “Anti-adhesive layers on nickel stamps for nanoimprint lithography”, Microelectron. Eng, Vol.73, pp.196-201, 2004.
28.T.L. Chang, J.C. Wang, “Study of nanopattern forming with chemical coatings for silicon-based stamp in nanoimprint process”, Proceedings of the 7th IEEE International Conference on Nanotechnology August 2 - 5, Hong Kong, 2007.
29.D.L Henann, V. Srivastava, H.K. Taylor, M.R. Hale, D.E. Hardt, L. Anand, “Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro hot-embossing”, J. Micromech. Microeng,Vol.19, pp. 115030, 2009.
30.John Hollahan, George L. Carlson, “Hydroxylation of Polymethylsiloxane Surfaces by Oxidizing Plasmas ”, J. Appl. Polym. Sci, Vol. 14, pp. 2499-2508, 1970.
31.Lai. J.Y., Lin. Y.Y., Denq. Y.L, Shyu. S.S, Chen, J.K., “Surface modification of silicone rubber by gas plasma treatment”, J. Adhes. Sci. Technol, Vol. 10, pp. 231-242, 1996.
32.Hui Taek Kim, Ok Chan Jeong, “PDMS surface modification using atmospheric pressure plasma”, Microelectron. Eng, Vol. 88, pp. 2-6, 2011.
33.Jörg Lahann, Mercedes Balcells, Hang Lu, Teresa Rodon, Klavs F. Jensen, Robert Langer, “Reactive Polymer Coatings:  A First Step toward Surface Engineering of Microfluidic Devices”, Anal. Chem, Vol. 75, pp. 2117-2122, 2003.
34.Yan Liu, Joseph C. Fanguy, Justin M. Bledsoe, Charles S. Henry, “Dynamic Coating Using Polyelectrolyte Multilayers for Chemical Control of Electroosmotic Flow in Capillary Electrophoresis Microchips”, Anal. Chem, Vol. 72, pp. 5939-5944, 2000.
35.S. Pinto, P. Alves, C.M. Matos, A.C. Santos, L.R. Rodrigues, J.A. Teixeira, M.H. Gil, “Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications”, Colloids and Surfaces B: Biointerfaces, Vol.81, pp. 20-26, 2010.
36.Vikash Sharma, Marshal Dhayala, Govindb, S.M. Shivaprasadb, S.C. Jaina, “Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic application ”, Vaccum, Vol. 81, pp. 1094-1100, 2007.
37.Katoh M., Izumi Y., Kimura H., Ohte T., Kojima A., Ohtani S, “Investigation of characteristics of carbon materials with various structures modified by plasmas using diagnostics and materials-surface analysis”, Appl. Surf. Sci, Vol. 100, pp. 226-231, 1996.
38.Bin-Da Chan, Kuo-Huang Hsieh, Sen-Yeu Yang, “Thin-film patterns directly fabricated using a transfer stamping technique”, J. Micromech. Microeng, Vol. 19, pp. 025010, 2009..
39.A. Grill, “Cold Plasma in Materials Fabrication: From Fundamentals
to Application”, Wiley-IEEE Press, 1994.
40.A. Ulman, “An Introduction to Ultra-thin Organic Films: From
Langmuir-Blodgett to Self-Assembly”, Academic Press, 1991.
41.N. Sprang and D. Theirich, J. Engemann, “Plasma and Ion Beam
Surface Treatment of Polyethylene”, Surface and Coating Technology, Vol. 74-75, pp. 689-695, 1995.
42.張光輝,“大氣電漿處理聚苯乙烯及表面接枝聚合聚異丙基
丙烯醯胺之研究”,大同大學碩士論文,2009.
43.C. C. Wang, G. H. Hsiue, “Glucose Oxidase Immobilization
onto a Plasma-Induced Graft Copolymerized Polymeric Membrane
Modified by Poly(Ethylene Oxide)as a Spacer”, J. Appl. Polym. Sci, Vol. 50, pp. 1141-1149, 1993.
44.H. Yasuda, “Plasma Polymerization”, Academic Press, 1985.
45.H. K. Yasuda, “Plasma Polymerization and Plasma Interactions with
Polymeric Materials”, John Wiley & Sons, Inc., 1990.
46.Y. L Hsieh, M. Wu, “Residual Reactivity for Surface Grafting of
Acrylic Acid on Argon Glow-discharged Poly(ethylene terephalate)(PET) Films”, J. Appl. Polym. Sci, Vol. 43, pp. 2067-2082, 1991.
47.L. Dai, H. A. W. Stjohn, J. Bi, P. Zientek, R. C. Chatelier, H. J.
Griesser, “Biomedical Coatings by the Covalent Immobilization of
Polysaccharides onto Gas-Plasma Activated Polymer Surfaces”, Surf. Interface Anal, Vol. 29, pp. 46-55, 2000.
48.Jongsoo Kim, Manoj K. Chaudhury, Michael J. Owen, “Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge”, J. Colloid Interface Sci, Vol. 226, pp. 231-236, 2000.
49.汪建民,“材料分析”,中國材料學會,1999.
50.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,
“Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, Inc, 1995.
51.N. H. Turner, “X-ray Photoelectron and Auger Electron
Spectroscopy”, Applied Spectroscopy Reviews, Vol. 35, pp. 203-254, 2000.
52.Ph. Buffat, J-P. Borel, “Size effect on the melting temperature of gold particles” Phys Rev A, Vol. 13, pp. 2287-2298, 1976.
53.H. E. Exner, E. Arzt, “Physical Metallurgy: Sintering processes”, Elsevier Science, pp. 2627-2662, 1996.

無法下載圖示 全文公開日期 2017/01/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE