簡易檢索 / 詳目顯示

研究生: 薛宇玲
Yu-Ling Hsueh
論文名稱: 使用非均相觸媒Amberlyst 39之乙酸異丙酯合成反應動力行為研究
Kinetic Behavior Study on the Synthesis of Isopropyl Acetate Using Heterogeneous Catalyst Amberlyst 39
指導教授: 李明哲
Ming-Jer Lee
口試委員: 李夢輝
Meng-Hui Li
吳弦聰
Hsien-Tsung Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 非均相觸媒酯化反應反應動力行為
外文關鍵詞: Heterogeneous Catalyst, Kinetic Behavior, Amberlyst 39
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用批式反應器探討由乙酸與異丙醇合成乙酸異丙酯合成反應之非均相反應動力行為,反應中使用酸性陽離子交換樹脂Amberlyst 39為觸媒。實驗操作於328.15 K至348.15 K之間,此外,並探討(醇/酸)進料莫耳比、觸媒質傳阻力以及觸媒添加量之效應。
反應動力實驗結果顯示,反應速率隨著反應溫度、(醇/酸)進料莫耳比、觸媒量加快;但轉速與觸媒粒徑對轉化率影響不大,而增加(醇/酸)進料莫耳比也會提升酸之平衡轉化率。經由吸附平衡實驗結果得知,乙酸異丙酯之合成反應中各成分於Amberlyst 39之吸附強度依序為水 > 乙酸 > 異丙醇 > 乙酸異丙酯。
乙酸異丙酯合成反應動力數據分別以理想溶液擬均相模式(IQH)、非理想溶液擬均相動力模式(NIQH)、Eley-Rideal(ER)模式、Langmuir-Hinshelwood-Hougen-Watson(LHHW)模式模式關聯,並求得最適化的動力參數值,NRTL模式則用於計算各反應成分之活性係數。關聯的結果顯示ER模式為描述乙酸異丙酯合成反應的非均相催化動力行為的最佳模式;惟吸附效應不顯著。


The heterogeneous kinetics behavior was investigated with a batch reactor for the synthesis of isopropyl acetate from acetic acid and isopropyl alcohol (IPA) over acidic cation-exchange resins, Amberlyst 39. The experiments were conducted at tempertures from 328.15 K to 348.15 K. Additionally, the effects of molar ratio of IPA to acetic acid in the feed stream, the mass transfer resistances, and the different levels of catalyst loadings on the catalytic reaction were also observed.
The reaction rate of acetic acid increased with increase of reaction temperature, molar ratio of IPA to acetic acid in the feed stream and catalyst loading, but rotational speed and the size of catalyst beads are minor factors. Moreover, the equilibrium conversion of acid increased with increase of reaction temperature and molar ratio of IPA to acetic acid in the feed stream. The relative adsorption strengths of the reacting species were determined by adsorption experiments. The results indicated that the magnitude of adsorption strengths on Amberlyst 39 followed the order of water > isopropyl acetate > acetic acid > IPA .
The kinetic data of the synthesis of isopropyl acetate were correlated with the ideal-quasi-homogeneous (IQH), the non-ideal-quasi-homogeneous (NIQH) the Eley-Rideal (ER), the Langmuir-Hinshelwood-Hougen-Watson (LHHW) models, respectively. The optimal values of the kinetic parameters were determined from the data fitting. The NRTL model was used to calculate the activity coefficients for each reacting species. The ER model yielded the best representation for the kinetic behavior of heterogeneous catalytic synthesis of isopropyl acetate, but the adsorption effect is minor.

目 錄 第一章 緒論 1 1-1 前言 1 1-2文獻回顧 4 1-3 本研究之重點 6 第二章 反應動力實驗 12 2-1 酯化反應動力數據量測 12 2-2 藥品 16 2-3 實驗步驟 17 2-4 組成分析 19 2-5 數據處理 20 2-6 動力反應實驗結果 22 2-7 結果與討論 24 第三章 等溫吸附平衡實驗 38 3-1 雙成份系統吸附平衡測量 38 3-2 藥品 43 3-3 實驗步驟 44 3-4 數據處理 45 3-5 吸附實驗結果 47 3-6 吸附實驗數據關聯結果 48 第四章 動力模式 58 4-1 動力模式 58 4-2 理想溶液擬均相動力模式 59 4-3 非理想溶液動力模式 62 4-4 速率常數與吸附常數的訂定 64 4-5 乙酸異丙酯之動力模式關聯結果 66 4-6 非理想溶液之平衡常數 67 第五章 結論與建議 91 5-1 結論 91 5-2 建議與注意事項 93 參考文獻 94 符號說明 97

[1] Balakrishnan, T. and V. Rajendran, “Polymer Supported Reagents. III. Kinetic Study of Synthesizing n‐Octylacetate Using Insoluble Titanium Tetrachloride, ”Journal of Applied Polymer Science, 78, 2075–2080 (2000).
[2] Sanz, M. T. and J. Gmehling, “Esterification of Acetic Acid with Isopropanol Coupled with Pervaporation: Part I: Kinetics and Pervaporation Studies,” Chemical Engineering Journal, 123, 1–8 (2006)
[3] Akyalçın, S. and M. R. Altıokka, “Kinetics of Esterification of Acetic Acid with 1-Octanol in the Presence of Amberlyst 36, ” Applied Catalysis A: General, 429–430, 79–84 (2012).
[4] Ilgen, O., “Investigation of Reaction Parameters, Kinetics and Mechanism of Oleic Acid Esterification with Methanol by Using Amberlyst 46 as a Catalyst,” Fuel Processing Technology, 124, 134–139 (2014).
[5] Lin, J. W., A. H. Zaki, H. T. Wu , H. M. Lin , and M. J. Lee, “Kinetics Study on Esterification of Acrylic Acid and Ethanol over Acidic Cation-Exchange Resin Beads Amberlyst 35,” Journal of the Taiwan Institute of Chemical Engineers, Accepted 23 May 2019, Available online 10 June 2019. (https://doi.org/10.1016/j.jtice.2019.05.021)
[6] Lilja, J., D. Yu. Murzin, T. Salmi, J. Aumo, P. Mäki-Arvela, and M. Sundell, “Esterification of Different Acids over Heterogeneous and Homogeneous Catalysts and Correlation with Taft Equation,” J. Molecular Catalysis A: Chem., 182–183, 555–563 (2002).

[7] Liu, W. T. and C. S. Tan, “Liquid-Phase Esterification of Propionic Acid with n-Butanol,” Ind. Eng. Chem. Res., 40, 3281-3286 (2001).
[8] Yadav, G. D. and M. B. Thathagar, “Esterification of Maleic Acid with Ethanol over Cation-Exchange Resin Catalysts,” Reactive & Functional Polymers, 52, 99–110 (2002).
[9] Tejero J., E. Creus, M. Iborra, F. Cunill, J. F. Izquierdo, C. Fité, “Comparative Study of IPTBE Synthesis on HZSM-5 and Ion-Exchange Resin Catalysts,” Catalysis Today, 65, 381–389 (2001).
[10] González, J. C. and J. R. Fair, “Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column. 1. Reactive Kinetics, Chemical Equilibrium, and Mass-Transfer Issues,” Ind. Eng. Chem. Res., 36, 3833–3844 (1997).
[11] Tsao, J. C. Y., T. C. Huang, and H. S. Weng, “Kinetic Studies for the Preparation of Itaconates by Continuous-Flow and Fixed-Bed Methods,” Ind. Eng. Chem. Process Des. Dev., 7, 401–409 (1968).
[12] Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Function for Liquid Mixtures,” AIChE J., 14, 135–144 (1968).
[13] Fredenslund, A., J. Gmehling, and P. Rasmussen, “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).
[14] Sanz, M. T., R. Murga, and J. L. Cabezas, “Autocatalyzed and Ion-Exchange-Resin-Catalyzed Esterification Kinetics of Lactic Acid with Methanol,” Ind. Eng. Chem. Res., 41, 512–517 (2002).
[15] Song, W., G. Venimadhavan, J. M. Manning, M. F. Malone, and M. F. Doherty, “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis,” Ind. Eng. Chem. Res., 37, 1917–1928 (1998).
[16] Xu, X., Y. Zheng, and G. Zheng, “Kinetics and Effectiveness of Catalyst for Synthesis of Methyl tert-Butyl Ether in Catalytic Distillation,” Ind. Eng. Chem. Res., 34, 2232–2236 (1995).

無法下載圖示 全文公開日期 2024/07/18 (校內網路)
全文公開日期 2024/07/18 (校外網路)
全文公開日期 2024/07/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE