簡易檢索 / 詳目顯示

研究生: 李澈
Che - Lee
論文名稱: 光催化降解磷化氫之動力學探討
Kinetics of reaction of photocatalytic degradation of phosphine over titanina photocatalyst
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 謝育民
Yu-ming Hsieh
顧洋
Young Ku
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 197
中文關鍵詞: 磷化氫光催化反應動力學改質定量分析
外文關鍵詞: phosphine, photocatalysis, kinetic model, modification, quantitative analysis
相關次數: 點閱:341下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究為使用二氧化鈦進行光催化降解磷化氫氣體之反應,其可分為反應動力學、光觸媒材料改質與磷化氫氣體定量分析等三部份,在反應動力學部份中,改變不同反應參數,進料濃度、流率、氧氣分率、光強度、相對濕度與觸媒量來進行反應機制之探討,以推導出合理的反應動力學模式,在此部份使用吸附動力學Langmuir- Hinshelwood model做依據,並與Power Law模式進行比較。此外,進一步探討在不同光源(UVA-365nm與UVC-254nm)激發下的光催化反應,可證實不同光源所產生的能量對於磷化氫降解的影響。
在光觸媒材料改質的部份,以金屬與非金屬改質二氧化鈦做光催化降解反應,在金屬部份使用共沈澱法(co-precipitation)與光沉積法(photodeposition)進行討論,金屬之使用分別為白金、金、銀、鈀、鐵、鎳與銅等七種金屬。
共沈澱法中,以白金改質效果最好,依次為鈀、金、銀、銅、鐵及鎳,而第二部份則以銀來進行光沉積法,可發現在銀的濃度為7×10-6M時,即可有效地提高磷化氫的降解速率。
非金屬改質則以葡萄糖為碳源,並使用浸鍍的方式製備含碳之二氧化鈦薄膜,在二氧化鈦溶膠中,葡萄糖含量為25%時,可以有效地提高光催化反應效果,最後將其金屬與非金屬改質之光催化效果進行比較,並探討其於商業上之應用價值。
第三部份則以此反應程序來發展分析氣相中磷化氫濃度之技術,利用不同光催化反應結果,以傅立葉紅外線光譜儀(FTIR)、X-ray光電子能譜儀 (XPS)、離子層析儀(IC)與感應耦合電漿發射光譜(ICP-AES)分別分析氣相中磷化氫濃度變化以及在光觸媒表面生成磷酸鹽含量,藉以建立濃度校正曲線,並以FTIR光譜分析磷化氫氧化後生成的產物。此部份預計可發展出低濃度磷化氫氣體之分析程序。


In this work, the photocatalytic degradation of gaseous phosphine over TiO2 under UV illumination in a continuous flow reaction was investigated in detail, including reaction kinetics, mechanism, and quantification of gaseous phosphine.
In first part, the effects of phosphine concentration, UV light intensity, oxygen concentration, retention time, relative humidity and amount of catalyst on photocatalytic reaction rate were studied for development of kinetic model. A rational reaction mechanism was satisfactorily developed by using Langmuir-Hinshelwood model and PFR design equation. Moreover, the quantum efficiency of photocatalyst under UVC illumination was less than that under UVA illumination.
In second part, three methods for modification of TiO2, co-precipitation, photodeposition, and carbonaceous impregnation, were carried out for the enhancement of photocatalytic reaction rate. The results indicated that the silver- and carbon-modified titania have good activities than pristine sample. The optimal concentrations of silver nitrate and glucose were 7×10-7 M and 25 wt% for the photodeposition and carbonaceous impregnation procedures, respectively.
Thirdly, the photocatalytic oxidized products of phosphine in the gaseous phase and on the TiO2 surface were respectively determined by fourier transform infrared, X-ray photoelectron spectroscopy, ionic chromatography, and inductively coupled plasma-atomic emission spectrometer. These results indicated that phosphate (PO43-) and phosphorus pentoxide (P2O5) were generated in this reaction. A simply quantative method for gaseous phosphine with small concentration was established preliminary with analyzing the phosphrous deratives by IC and ICP-AES.

摘要...........................................................................I Abstract....................................................................III 誌謝...........................................................................V 目錄..........................................................................VI 圖目錄........................................................................IX 表目錄.......................................................................XIII 第一章 前言.....................................................................1 1.1 磷化氫在半導體之應用..........................................................1 1.2 半導體之氣體汙染..............................................................6 1.3 二氧化鈦半導體在光觸媒領域之應用.................................................8 1.4 光觸媒之環境應用..............................................................9 1.5 研究動機...................................................................11 第二章 文獻回顧.................................................................14 2.1 磷化氫簡介.................................................................14 2.2 二氧化鈦簡介................................................................18 2.3 光催化反應.................................................................24 2.4 光催化原理.................................................................25 2.5 奈米二氧化鈦粉體製備.........................................................28 2.5.1 研究用製備法 .............................................................28 2.5.2 二氧化鈦改質 .............................................................31 2.6 氣相光降解動力學之文獻探討....................................................32 2.7 液相光降解動力學之文獻探討....................................................59 2.8 磷化氫吸附之文獻探討.........................................................65 2.9 金屬改質二氧化鈦之文獻探討....................................................70 第三章 研究方法.................................................................73 3.1 實驗規劃...................................................................73 3.2 藥品......................................................................74 3.3儀器設備....................................................................75 3.4 反應器設計.................................................................79 3.5 實驗步驟...................................................................80 3.5.1 製備樣品.................................................................80 3.5.2 磷化氫之光降解反應步驟 ......................................................82 3.5.3 樣品分析製備 ..............................................................84 第四章 結果與討論................................................................86 4.1 空氣中磷化氫於FTIR之訊號判別..................................................86 4.2 光降解影響參數..............................................................88 4.2.1磷化氫之光解...............................................................88 4.2.2 觸媒活性測試 ..............................................................89 4.2.3觸媒量之影響...............................................................90 4.2.4磷化氫濃度之影響............................................................92 4.2.5滯留時間之影響.............................................................94 4.2.6光強度之影響...............................................................96 4.2.7氧氣濃度之影響.............................................................98 4.2.8相對濕度之影響.............................................................99 4.2.9光源之影響...............................................................104 4.2.9-1 磷化氫之光解...........................................................104 4.2.9-2磷化氫濃度之影響.........................................................105 4.2.9-3光強度之影響............................................................106 4.3動力學推導.................................................................109 4.3.1 Langmuir-Hinshelwood model.............................................109 4.3.2 Power Law..............................................................124 4.4材料改質...................................................................129 4.4.1 金屬摻雜................................................................129 4.4.1-1共沉澱法...............................................................129 4.4.1-2光沉積法...............................................................136 4.4.2 非金屬改質..............................................................140 4.5 定量分析與產物鑑定.........................................................144 4.5.1 氣相產物之FTIR分析結果...................................................144 4.5.2 二氧化鈦表面產物之FTIR分析結果.............................................148 4.5.3 X-ray光電子能譜儀 (XPS).................................................150 4.5.4 離子層析儀(IC)..........................................................153 4.5.5 感應耦合電漿原子發射光譜分析儀 (ICP-AES)....................................160 4.6 磷化氫之反應機制...........................................................163 第五章 結論與未來展望...........................................................165 5.1 動力學機制................................................................165 5.2 光觸媒材料改質.............................................................166 5.3 反應機制與產物分析..........................................................166 5.4 未來展望..................................................................167 第六章 參考文獻................................................................170

[1]許嘉興,“半導體工廠火災搶救之研究”,中央警察大學,2002,消防科學研究所碩士論文
[2]經濟部工業局/財團法人中技社,民國89 年,工業用特殊氣體(半導體篇)防災、救災技術手冊草案(初稿)
[3]邱晨瑋,“半導體產業無塵室消防安全設計因素之研究”,中央警察大學,1998,消防科學研究所碩士論文
[4]維基百科,“有機金屬氣相沉積” (http://zh.wikipedia.org/wiki/MOCVD)
[5]翁敏航,“積體電路製程概論”, 國家奈米元件實驗室
[6]林榮良,“二氧化鈦光催化原理和應用例子”,成功大學化學系
[7]林有銘,功能性粉末奈米光觸媒,科學發展-第408期,2006年12月
[8]吳麗珠,“預防燻蒸作業磷化氫中毒及爆炸”,勞工安全衛生局,90年6月
[9]廖幸娟,“以UV/TiO2光催化反應處理液相酚”,碩士論文,國立台灣大學環境衛生研究所。
[10]中國職業病防治公益網
[11]環保署毒災應變諮詢中心,防救手冊,民國98年版
[12]全國科技信息服務網-四川節點
[13]于劍昆,“磷化氫的製備與精製”,河南洛陽黎明化工研究院
[14]魯玉杰,閻蘶,“小麥中磷化氫殘留快速檢測方法的研究”,河南工業大學學報
[15]奈米國家型人才培育計畫-中小學奈米科技教育發展及科普教育推廣研究
[16]周嘉雄,“有機磷酸鈾與磷酸鈾之合成、結構鑑定與性質研究”,國立中央大學化學研究所碩士論文
[17]高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,五南圖書出版公司,第32~135頁 (2004)
[18]黃琴雲,“二氧化鈦/鎢多層薄膜”, 正修科技大學碩士論文
[19]維基百科 ,“磷化氫”(http://zh.wikipedia.org/wiki/磷化氫)
[20]藤嶋昭,橋本和仁,渡部俊也,圖解光觸媒,世茂出版有限公司,第74~124頁 (2006)
[21]郭建宏,“碳改質二氧化鈦及其可見光應答催化活性研究”,台灣科技大學化工碩士論文,2010
[22]黃柏凱,“鎳改質二氧化鈦製備及其光催化活性之研究”,台灣科技大學化工碩士論文,2009
[23]張義國,“金擔載二氧化鈦及其在紫外光/可見光下光催化活性之研究”,台灣科技大學化工碩士論文,
2010
[24]蕭宇呈,“碳改質二氧化鈦薄膜及其可見光催化活性之研究”,台灣科技大學化工碩士論文,2011
[25]U. Diebold,“The surface science of titanium dioxide”, Surface Science
Reports, 48(5-8), (2003), pp. 53~229.
[26]B.G. Oliver, E.G. Cosgrove, J.H. Carry, “Effect of suspended Sediments on
the photolysis of organics in water ”, Environ. Sci . Techolo., vol 22,
1988, pp. 256
[27]A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water
splitting”, Chem. Soc. Rev., 38, (2009), pp. 253~278
[28]H.F. Payne , “The dip coater: An instrument for making uniform films by the
dip method”, Industrial and Engineering Chemistry 15 (1), pp. 48~56
[29]University of Colorado Mineral Structure and Property Data TiO2 Group
[30]M.C. Lu, G.D. Roama, J.N. Chen, C.P. Huang , “Factors affecting the
photocatalytic degradation of dichlorvos over titanium dioxide supported on
glass”, J. Photochem.photobiol.A : Chem 76(1993), pp. 103~110
[31]P.A. Deveau , F. Arsac, P.X. Thivel , C. Ferronato, F. Delpech , J.M.
Chovelon , P. Kaluzny , C. Monnet, “Different methods in TiO2
photodegradation mechanism studies: Gaseous and TiO2-adsorbed phases”,
Journal of Hazardous Materials 144 (2007), pp.692~697
[32]L. Ma, P. Ning, Y. Zhang, X.Q. Wang , “Experimental and modeling of fixed-
bed reactor for yellow phosphorous tail gas purification over impregnated
activated carbon”, Chemical Engineering Journal 137 (2008), pp.471~479
[33]A. Sirisuk , C. G. Hill Jr., M.A. Anderson, “Photocatalytic degradation of
ethylene over thin films of titania supported on glass rings”, Catalysis
Today 54 (1999), pp.159~164
[34]J.L. Shie , C.H. Lee , C.S. Chiou ,C.T. Changa, C.C. Chang, C.Y. Chang,
“Photodegradation kinetics of formaldehyde using light sources of UVA, UVC
and UVLED in the presence of composed silver titanium oxide photocatalyst”,
Journal of Hazardous Materials 155 (2008), pp.164~172
[35]X.Wang, P.Ning, Y.Shi, M.Jiang, “Adsorption of low concentration phosphine
in yellow phosphorus off-gas by impregnated activated carbon”, Journal of
Hazardous Materials 171 (2009), pp.588~593
[36]K.W. Krosley, D.M. Collard, J. Adamson, M.A. Fox, “Degradation of
organophosphonic acids catalyzed by irradiated titanium dioxide”, J.
Photochem. Photobiol. A: Chem.. 69 (1993), pp.357~360
[37]J. Shang, Y. Du, Z. Xu, “Photocatalytic oxidation of heptane in the
gas-phase over TiO2 ”, Chemosphere 42(2002), pp.93~99
[38]Y. Ku , C.M. Ma, Y.S. Shen, “Decomposition of gaseous trichloroethylene in a
photoreactor with TiO2-coated nonwoven fiber textile”, Applied Catalysis B:
Environmental 34 (2001), pp.181~190
[39]K.H. Wang, H.H. Tsai, Y.H. Hsieh , “The kinetics of photocatalytic
degradation of trichloroethylene in gas phase over TiO2 supported on glass
bead”, Applied Catalysis B: Environmental 17 (1998), pp.313~320
[40]S.B. Kim, S.C. Hong, “ Kinetic study for photocatalytic degradation of
volatile organic compounds in air using thin film TiO2 photocatalyst”,
Applied Catalysis B: Environmental 35 (2002), pp.305~315
[41]J.S. Kim, H.K. Joo, T.K. Lee, K. Itoh, M. Murabayashi, “ Photocatalytic
Activity of TiO2 Films Preserved under Different Conditions: The Gas-Phase
Photocatalytic Degradation Reaction of Trichloroethylene”, Journal of
Catalysis 194, (2000), pp.484~486
[42]G.L. Puma, I. Salvado-Estivill , T.N. Obee, S.O. Hay, “ Kinetics rate model
of the photocatalytic oxidation of trichloroethylene in air over TiO2 thin
films”, Separation and Purification Technology 67 (2009), pp.226~232
[43]S. Brosillon, L. Lhomme, C. Vallet, A. Bouzaza, D. Wolbert , “Gas phase
photocatalysis and liquid phase photocatalysis: Interdependence and
influence of substrate concentration and photon flow on degradation reaction
kinetics”, Applied Catalysis B: Environmental 78 (2008), pp.232~241
[44]S. Yamazaki , H. Tsukamoto , K. Araki, T. Tanimura , I. Tejedor-Tejedor, M-
A. Anderson, “ Photocatalytic degradation of gaseous tetrachloroethylene on
porous TiO2 pellets”, Applied Catalysis B: Environmental 33 (2001),
pp.109~117
[45]Y. Xu, C.H. Langford, “Variation of Langmuir adsorption constant determined
for TiO2-photocatalyzed degradation of acetophenone under different light
intensity”, Journal of Photochemistry and Photobiology A: Chemistry 133
(2000), pp.67~71
[46]M.E. Zorn, D.T. Tompkins, W.A. Zeltner, M.A. Anderson,“ Photocatalytic
oxidation of acetone vapor on TiO2/ZrO2 thin films”, Applied Catalysis B:
Environmental 23 (1999), pp.1~8
[47]N.Gonzalez-Garc’ıa, J-A. Ayllon, X. Domenech, J. Peral, “TiO2 deactivation
during the gas-phase photocatalytic oxidation of dimethyl sulfide”, Applied
Catalysis B: Environmental 52 (2004), pp.69~77
[48]J.M. Colabella, R.A. Stall, C.T. Sorensen, “ The adsorption and subsequent
oxidation of AsH3 and PH3 on activated carbon”, Journal of Crystal Growth 92
(1988) ,pp.189~195
[49]S. Rabindranathan, S. Devipriya, S. Yesodharan, “ Photocatalytic degradation
of phosphamidon on semiconductor oxides”, Journal of Hazardous Materials
B102 (2003), pp.217~229
[50]W.C. Li, H. Bai, J.N. Hsu, S.N. Li, C. Chen, “ Metal Loaded Zeolite
Adsorbents for Phosphine Removal”, Ind. Eng. Chem. Res. (2008), 47,
pp.1501~1505
[51]S. Jin, F. Shiraishi, “Photocatalytic activities enhanced for decompositions
of organic compounds over metal-photodepositing titanium dioxide”, Chemical
Engineering Journal 97 (2004), pp.203~211
[52]H.Y. Chen ,O. Zahra, M. Bouchy, F. Thomas , J.Y. Bottero, “ Adsorption
properties of TiO2 related to the photocatalytic degradation of organic
contaminants in water”, Journal of Photochemistry and Photobiology A:
Chemistry 85 (1995) pp.179~186
[53]A. Bouzaza, C. Vallet, A. Laplanche, “ Photocatalytic degradation of some
VOCs in the gas phase using an annular flow reactor Determination of the
contribution of mass transfer and chemical reaction steps in the
photodegradation process”, Journal of Photochemistry and Photobiology A:
Chemistry 177 (2006) pp.212~217
[54]J.M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta,A.R. Gonzilez-Elipe,
A. Fernbdez, “ Characterization and photocatalytic activity in aqueous
medium of TiO2 and Ag-TiO2 coatings on quartz”, Applied Catalysis B:
Environmental 13(1997) pp.219~228
[55]J. Chen, D.F. Ollis, W.H. Rulkens, H. Bruning,“ Kinetic processes of
photocatalytic mineralization of alcohols on metalized titanium dioxide”,
Wat. Res. 33, No. 5, (1999), pp. 1173~1180.
[56]K.P. Yu, G.W.M. Lee, “ Decomposition of gas-phase toluene by the combination
of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and
UV/O3)”, Applied Catalysis B: Environmental 75 (2007), pp.29~38
[57]T.N. Obee, R.T.Brown, “ TiO2 Photocatalysis for Indoor Air Applications:
Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of
Formaldehyde, Toluene, and 1 ,3Butadiene”, Environ. Sci. Techno (1995), 29,
pp.1223~1231
[58]W. Choi, J.Y. Ko, H. Park, J.S. Chung, “ Investigation on TiO2-coated
optical fibers for gas-phase photocatalytic oxidation of acetone”, Applied
Catalysis B: Environmental 31 (2001),pp.209~220
[59]W.C. Hung, S.H. Fu, J.J. Tseng, H. Chu, T.H. Ko, “ Study on photocatalytic
degradation of gaseous dichloromethane using pure and iron ion-doped TiO2
prepared by the sol–gel method”, Chemosphere 66 (2007) ,pp.2142~2151
[60]X.H. Xia, Y.Gao, Z.Wang, Z.J.Jia, “Structure and photocatalytic properties
of copper-doped rutile TiO2 prepared by a low-temperature process”, Journal
of Physics and Chemistry of Solids 69 (2008) ,pp.2888~2893
[61]H.Yamashita, H.Nishiguchi, N.Kamada , M.Anpo, Y.Teraoka, H.Hatano , S. Ehara
, K. Kikui, L. Palmisano, “Photocatalytic reduction of CO2 with H2O on TiO2
and Cu/TiO2 catalysts”, Research on Chemical Intermediates, 20, (1994),
pp.815~823
[62]R. J. M. Konings, E. H. P. Cordfunke, A. S. Booij, “The Infrared Spectra of
Gaseous P4O10, As4O6, and As4O10” , Journal of Molecular Spectroscopy 152,
(1992), pp.29~37
[63]S.A. Brand’an, S.B. D’ıaz, R. Cobos Picot, E.A. Disalvo, A. Ben Altabef, “
Hydration of inorganic phosphates in crystal lattices and in aqueous
solution an experimental and theoretical study”, Spectrochimica Acta Part A
66 (2007) pp.1152~1164
[64]P.G. Hall, P.M. Gfitins, J.M. Winn,, J. Robertson, “Sorption of phosphine by
activated carbon cloth and the effects of impregnation with silver and
copper nitrates and the presence of water”, Carbon 23. (1985) , pp. 353~371.
[65]A.V. Lyubimov,V.F.Garry, “Phosphine”, Haye’s Handbook of Pesticide
Toxicology
[66]J.W. Buchanan, R.J. Hanrahan, “A comparative study of the gas-phase
radiation chemistry of phosphine and ammonia ”, Radiation Research 42,
(1970), pp.244~254
[67]J.W. Buchanan, R.J. Hanrahan, “The radiation chemistry of phosphine-ammonia
mixtures in the gas-phase ”, Radiation Research 44, (1970), pp.296~304
[68]J.W. Buchanan, R.J. Hanrahan, “The use of phosphine as a free radical
scavenger in the radiolysis of methyl iodide vapor”, Radiation Research 44,
(1970), pp.305~312
[69]W. Choi, J.Y. Ko, H. Park, J.S Chung, “ Investigation on TiO2-coated optical
fibers for gas-phase photocatalytic oxidation of acetone”, Applied Catalysis
B: Environmental 31 (2001) pp.209~220
[70]F.Zhang, R. Jin, J. Chen, C. Shao, W.Gao, L.Li, N.Guan, “High photocatalytic
activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2
catalyst with fine silver clusters”, Journal of Catalysis 232 (2005)
pp.424~431
[71]H.W. Melville, “Photochemical decomposition of phosphine”, Nature , (1932),
pp.546.
[72]J.Cunnungham, S.Srijaranai, “Sensititized photo-oxidations of dissolved
alcohols in homogeneous and hetereogeneous systems Part 2. TiO2-sensitized
photodehydrogenations of benzyl alchol”, J.Photochem. Photobiol. A: Chem.,
58 (1991) pp.361~371

無法下載圖示 全文公開日期 2016/07/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE