簡易檢索 / 詳目顯示

研究生: 鄭朝元
Chao-Yuan Cheng
論文名稱: 設計具高光著色效率之新穎混合式光驅動電致色變元件並實現光學互補特性之研究
Designing a novel hybrid type photoelectrochromic device with high photocoloration efficiency and its application to realize the characteristic of optical complementary
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
林正嵐
Cheng-Lan Lin
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 130
中文關鍵詞: 互補式光驅動電致色變元件染料敏化太陽能電池電致色變元件高穿透還原氧化石墨烯記憶效應新型結構快速響應時間光驅動電致色變元件光著色效率聚羥甲基3,4-二氧乙基噻吩自供電系統智慧節能窗
外文關鍵詞: complementary photoelectrochromic device,, dye-sensitized solar cells, electrochromic device, fast response, highly transparent bifunctional electrocatalyst, memory effect, new structure, photoelectrochromic device, poly(hydroxymethylated-3,4-ethylenedioxythiophene), photo coloration efficiency, self-powered system, smart window
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結合染料敏化太陽能電池(Dye-sensitized solar cells, DSSCs)與電致色變元件(Electrochromic devices, ECDs)於單一元件中的光驅動電致色變元件(Photoelectrochromic device, PECD)為一種可直接轉換太陽能並驅動電化學元件的永續自供電系統(Self-powered systems)。然而,現今PECD仍受限於光陽極穿透度、電致色變材料選擇、電解質種類、濃度與結構上差異的緣故,無法達到如同電致色變元件兼具高光學對比與快速的響應時間。為了要解決上述議題,本研究有系統性地從材料設計與反應機制著手,開發一種具有全新結構的混合型光驅動電致色變元件並進一步首度提出及實現具有光學互補特性的互補式PECD。
    Pt為DSSC中最常使用於催化I3-還原反應之電催化材料,但其具備不透光的性質影響了整體光學穿透度。有鑒於此,本研究擬導入具備高穿透度的還原氧化石墨烯(reduced graphene oxide, rGO)於PEDOT-MeOH薄膜(rGO/PEDOT-MeOH)中做為PECD的電致色變與電催化之雙功能對電極。由於PEDOT-MeOH本身為一種具還原著色特性的導電高分子材料且對I3-具有出色的電催化能力,因此相當適合應用於PECD中來實現兼具有電催化與電致色變能力的雙功能對電極。為了進一步提升PEDOT-MeOH的電催化能力,本研究導入具有良好導電性與高透光特性的rGO來增加PEDOT-MeOH的導電性與電化學活性面積,提升電極對於電解液中I3-的電催化能力來強化PECD的光伏效能,進而提高元件的光學表現。然而,本研究結果顯示藉由導入rGO於PEDOT-MeOH雖然能提升雙功能電極的電催化能力進而提升光伏效能,但卻無法連帶增強其光學性能,反而適得其反。推測其原因可能為導入rGO增加了PEDOT-MeOH對電極的電催化能力將導致I3-的還原反應與PEDOT-MeOH的還原著色反應產生競爭反應,使得導入rGO/PEDOT-MeOH的PECD光學穿透度(ΔT)在特徵波長610 nm從25.2%降低至20.8%。
    因此,本研究擬將PEDOT-MeOH之電致色變與電催化功能獨立出來以避免產生競爭反應,為了實現此目的而設計了一種新型結構之混和型光驅動電致色變元件(Hybrid type PECD, H-PECD),其整合了分離式光驅動電致色變元件(Separated type PECD, S-PECD)與組合式光驅動電致色變元件(Combined type PECD, C-PECD)的結構設計與元件優勢。從循環伏安分析與可見光光譜結果來看,PEDOT-MeOH不僅展現了與Pt相近的I3-還原能力,且具有相當高的穿透特性(~70%)。於光陽極下方使用PEDOT-MeOH作為電致色變層並搭配PEDOT-MeOH對電極所組成的H-PECD與搭配Pt對電極所組成的C-PECD在特徵波長610 nm下的ΔT分別為31.7與8.3%,顯示H-EPCD相較於傳統C-PECD具備更高的光學對比,充分展現出了此新型結構在光學對比上的優勢。另一方面,將H-PECD與傳統S-PECD相比,H-PECD的著色時間(coloring time, τc)與去色時間(bleaching time, τb)分別為5.5與3.3秒,遠快於S-PECD的33.1與18.1秒,充分展現出了此新型結構在響應時間上的優勢,並連帶使得H-PECD的光著色效率(Photo coloring efficiency, PhCE)於照光初期可高達約160 W-1 min-1 cm2,明顯地高於S-PECD的20 W-1 min-1 cm2。
    在上述研究過程中還發現到H-PECD在短路/照光下操作具有疑似光學互補的特性,因此本研究進一步嘗試導入氧化著色材料-普魯士藍(Prussian blue, PB)於H-PECD中,並搭配原有的還原著色材料-PEDOT-MeOH。由於PB與PEDOT-MeOH的氧化還原峰電位分別位於0/-1.0與+0.1/-0.6 V (vs.Ag/Ag+) ,顯示兩種材料之氧化還原區間非常接近。除此之外,PB與PEDOT-MeOH的特徵波長也十分相近,分別位於波長700與610 nm,因此適合導入於PECD中實現光學互補。根據電致色變層在PECD的位置不同,可分為結構為氧化著色材料於光陽極且還原著色材料於對電極的α-混合式光驅動電致色變元件(α-H-PECD)與結構為還原著色材料於光陽極且氧化著色材料於對電極的β-混合式光驅動電致色變元件(β-Hybrid type-PECD, β-H-PECD)。於照光/短路時,觀察α-H-PECD於700與610 nm下的穿透度與時間的變化,發現兩波長的穿透度有交叉的現象,此現象說明了PB與PEDOT-MeOH的著色在-H-PECD此種結構下具有時間差而無法實現光學互補。為了解決上述問題,更改操作條件並且調整元件的結構為β-H-PECD。從光譜的曲線來看,β-H-PECD在使用0.5 M LiI/0.005 M I2於PC溶劑的電解液,於特徵波長642 nm下有25.1 %的光學對比,高於非互補式PECD於611 nm下20.2 %的光學對比。從特徵波長的偏移與光學對比的上升,β-H-PECD確實實現了光學互補的概念,首度實現具有光學互補特性的“互補式光驅動電致色變元件”(Complamentary photoelectrochromic device, Cm-PECD)。藉由特定的操作條件,β-H-PECD所實現的Cm-PECD可具有記憶效應與快速去色響應時間(9.3秒)。


    Nowadays, the progress of solar-driven photoelectrochromic devices (PECDs) is restricted by lower optical contrast and sluggish response time, which limited its potential application to further replacing the conventional electrochromic devices (ECDs). To solve the problem described above, a novel structure of PECD with different materials were developed in this research.
    In this study, PEDOT-MeOH was selected as bifunctional material with electrochromic and electrocatalytic characteristics in the counter electrode (CE) of PECD. To enhance the optical performance of PECD by improving the photovoltaic performance, highly transparent reduced graphene oxide (rGO) with good conductivity and promising electrocatalytic activity for reducing I3- was introduced into the PEDOT-MeOH film. However, the PECD with PEDOT-MeOH/rGO CE had the lowest optical performance either in optical contrast (ΔT610nm) of 20.8% or in response time (τc/τb) of 30.4/32.3 s, compared to PECD with pristine PEDOT-MeOH CE (ΔT610nm=25.2%, τc/τb= 26.1/25.3 s). This result may be caused by competition of redox reaction of I3- and coloring reaction of PEDOT-MeOH on the CE with PEDOT-MeOH/rGO film.
    To solve the above problem, a new structure of hybrid type PECD (H-PECD) with separated electrochromic layer and photoactive layer on the photoelectrode was developed. Compared to other structures of PECD, the electron transfer path was shortened for accelerating the coloring process in the case of H-PECD. As for the bleaching process, the CE with highly transparent PEDOT-MeOH can act as electrocatalyst material to accelerate I3- reduction for facilitating the bleaching process in the condition of short circuit. The H-PECD with excellent coloring and bleaching characteristics exhibited a fast response time of τc/τb (5.5/3.3 s), which significantly faster than the separated type PECD (S-PECD) with τc and τb of 33.1 and 18.1 s, respectively. Therefore, photo coloration efficiency (PhCE) of H-PECD was around ≌160 W-1min-1cm2 at the initial state, which was much higher than that of S-PECD (20 W-1min-1cm2). This result indicated that H-PECD could achieve similar optical contrast efficiently by consuming the same solar energy. Moreover, H-PECD under illumination with the condition of short circuit showed higher optical contrast of 31.3% than that with the condition of open circuit (28.3%), which implied the phenomenon of optical complementary could be achieved by the architecture of H-PECD.
    To realize the complementary PECD (Cm-PECD), Prussian blue (PB) was introduced as secondary electrochromic materials into the various combination of coloring materials of H-PECD, namely α-H-PECD and β-H-PECD. For the UV-Vis spectrum of
    α-H-PECD, there was a prominent absorption peak at the wavelength of 700 nm under illumination/short circuit (I/SC) at initial. After a while, the absorption peak was shifted from 700 nm to 610 nm, represented the reduction of PEDOT-MeOH happened. Due to the potential difference between PEDOT-MeOH and PB are approached to zero, the reduction of PEDOT-MeOH was always accompanied by the oxidation of PB. Therefore, there was a time lag in the coloring order between PEDOT-MeOH and PB under I/SC since both electrodes will be reduced simultaneously. To avoid this problem, β-H-PECD was proposed to change the operating type of coloring and bleaching processes. β-H-PECD was derived from α-H-PECD because of the PB in CE would react with I-/I3- automatically, which means the PB could color and bleach without receiving electrons from TiO2/dye. To investigate the complmentary phenomenon in β-H-PECD, the characteristic wavelength of combined type PECD (C-PECD) with PEDOT-MeOH was included to compare with that of β-H-PECD. In the electrolyte of 0.5 M LiI/0.005 M I2/PC, β-H-PECD and C-PECD showed the optical contrast of 25.1 % at 642 nm and 18.8% at 611 nm, respectively, which implied that Cm-PECD was successfully realized by β-H-PECD with PEDOT-MeOH and PB. Moreover, β-H-PECD had the memory effect to maintain the colored states under the specific operating condition and fast response of bleaching.

    目錄 摘要 I Abstract IV 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號說明 XVI 第 1 章 緒論 1 1.1前言 1 1.2電致色變的概論 2 1.2.1電致色變技術之發展與應用 2 1.2.2電致色變材料 4 1.2.3電致色變元件的種類 13 1.3染料敏化太陽能電池的背景與目前發展 17 1.3.1染料敏化太陽能電池材料的技術發展 19 1.3.2染料敏化太陽能電池的工作機制 21 1.4自供電系統的簡介 22 1.5光驅動電致色變元件的概論 24 1.5.1光驅動電致色變元件的種類 29 第 2 章 文獻回顧與研究動機 31 2.1分離式光驅動電致色變元件(S-PECD)的近期發展 31 2.2組合式光驅動電致色變元件(C-PECD)的近期發展 33 2.3研究動機 35 第 3 章 實驗流程與儀器原理 37 3.1實驗藥品 37 3.2實驗儀器 38 3.3實驗方法 39 3.3.1導電玻璃的前處理 39 3.3.2光陽極的製備 39 3.3.3還原氧化石墨烯(rGO)電極的製備 40 3.3.4白金(Pt)電極的製備 40 3.3.5製備PEDOT-MeOH、PEDOT-MeOH/rGO與Pt電極 40 3.3.6元件的封裝 40 3.3.7合成奈米化之普魯士藍(PB)粒子 41 3.3.8普魯士藍(PB)薄膜電極的製備 41 3.4儀器操作原理 41 3.4.1循環伏安分析 (Cyclic voltammetry, CV) 41 3.4.2線性掃描伏安法 (linear sweep voltammetry, LSV) 43 3.4.3紫外光-可見光光譜分析 (UV-vis) 45 3.4.3計時安培法 (Amperometric i-t cuve) 45 3.5實驗分析方法 47 3.5.1三極式分析方法 47 3.5.2三極式薄膜的UV-Vis光譜分析 48 3.5.3光伏效能的量測 49 第 4 章 開發雙功能rGO/PEDOT-MeOH複合電極應用於光驅動電致色變元件 51 4.1簡介 51 4.2結果與討論 51 4.2.1 PEDOT-MeOH、PEDOT-MeOH/rGO、Pt電極的電催化及光學特性 51 4.2.2 PEDOT-MeOH薄膜的電化學及光學特性 53 4.2.3 S-PECD搭配不同雙功能電極的光伏效能與光學特性 56 4.2.4 S-PECD使用PEDOT-MeOH電極搭配其他濃度電解液的光伏效能與光學特性 59 4.3 結論 61 第 5 章 開發具快速著去色特性之混和式光驅動電致色變元件結構 63 5.1簡介 63 5.2結果與討論 64 5.2.1 PEDOT-MeOH電極與Pt電極的電催化能力及光學特性 64 5.2.2比較組合式(C-PECD)與混合式光驅動電致色變元件(H-PECD)的光伏效能與光學特性 66 5.2.3 H-PECD於不同著色與去色操作方式下的光學表現 69 5.2.4比較分離式(S-PECD)與混合式光驅動電致色變元件(H-PECD)的電化學與光學表現 71 5.3 結論 76 第 6 章 開發PEDOT-MeOH/Prussian Blue互補式光驅動電致色變元件 77 6.1 簡介 77 6.2 結果與討論 78 6.2.1 PEDOT-MeOH與PB薄膜的電化學與光學特性 78 6.2.2 α-H-PECD與β-H-PECD的工作機制 82 6.2.3探討α-H-PECD的光學互補特性 85 6.2.4探討β-H-PECD的光學互補特性 90 6.3 結論 97 第 7 章 結論與建議 99 7.1結論 99 7.2建議 100 參考文獻 101 附錄 110

    [1] C.G. Granqvist, Chromogenic materials for transmittance control of large-area windows. Critical Reviews in Solid State and Materials Sciences, 1990, 16, 291-308.
    [2] R.J. Araujo, Opthalmic glass particularly photochromic glass. Journal of Non-Crystalline Solids, 1982, 47, 69-86.
    [3] R.J. Araujo, Photochromism in glasses containing silver halides. Contemporary Physics, 2006, 21, 77-84.
    [4] E. Hadjoudis, E. Vittorakis and I. Moustakali-Mavridis, Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses. Tetrahedron, 1987, 43, 1345-1360.
    [5] S.M. Babulanam, T.S. Eriksson, G.A. Niklasson and C.G. Granqvist, Thermochromic VO2 films for energy-efficient windows. Solar Energy Materials & Solar Cells, 1987, 16, 347-363.
    [6] C.M. Lampert, Electrochromic materials and devices for energy efficient windows. Solar Energy Materials & Solar Cells, 1984, 11, 1-27.
    [7] J.S.E.M. Svensson and C.G. Granqvist, Electrochromic coatings for “smart windows Solar Energy Materials. Solar Energy Materials & Solar Cells, 1985, 12, 391-402.
    [8] S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi and N. Kobayashi, Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials, 2012, 24, 1-5.
    [9] A. Tsuboi, K. Nakamura and N. Kobayashi, A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Advanced Materials, 2013, 25, 3197-3201.
    [10] V.K. Thakur, G. Ding, J. Ma, P.S. Lee and X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials, 2012, 24, 4071-4096.
    [11] H.J. Yen, K.Y. Lin and G.S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. Journal of Materials Chemistry, 2011, 21, 6230-6237.
    [12] E.L. Runnerstrom, A. Llordes, S.D. Lounis and D.J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chemical Communications, 2014, 50, 10555-10572.
    [13] F. Chen, X. Fu, J. Zhang and X. Wan, Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems. Electrochimica Acta, 2013, 99, 211-218.
    [14] A. Llordes, G. Garcia, J. Gazquez and D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature, 2013, 500, 323-326.
    [15] E.O. Brimm, J.C. Brantley, J.H. Lorenz and M.H. Jellinek, Sodium and Potassium Tungsten Bronzes. Journal of Analytical and Applied Chemistry, 1951, 73, 5427-5432.
    [16] S.K. Deb, A Novel Electrophotographic System. Applied Optics, 1969, 8, 192-195.
    [17] https://www.sageglass.com/en/faqs/how-dynamic-glass-works.
    [18] https://www.gentex.com/.
    [19] http://lcp.elis.ugent.be/tutorials/tut_echrom.
    [20] A.J. Heeger, S. Kivelson, J.R. Schrieffer and W.P. Su, Solitons in conducting polymers. Reviews of Modern Physics, 1988, 60, 781-850.
    [21] 廖嘉筠, 並聯式具高光學對比之光致電變色元件, 化學工程學系, 國立臺灣大學,. 2012.
    [22] https://www.semiconductorforu.com/construction-of-led/.
    [23] J. Liu, Z. Qin, H. Gao, H. Dong, J. Zhu and W. Hu, Vertical Organic Field‐Effect Transistors. Advanced Functional Materials, 2019, 29.
    [24] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang and H. Huang, A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology, 2008, 19, 465701.
    [25] J. Roncali, Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications. Chemical Reviews, 1992, 92, 711-738.
    [26] R.D. Mccullough, The Chemistry of Conducting Polythiophenes. Advanced Materials, 1998, 10, 93-116.
    [27] H. Yoshikawa, R.H. Yamatokooriyama and K.I. Yao, Method and washing machine for imparting antistaticty to fabric structure and fabric structure imparted with antistaticity. United States Patent, 2009, US20070251022A1.
    [28] F. Jonas and L. Schrader, Conductive modifications of polymers with polypyrroles and polythiophenes. Synthetic Metals, 1991, 41-43, 831-836.
    [29] V. Mercedes, D. Petter, B. Johan, L. Andrzej and I. Ari., Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2004, 97, 182-189.
    [30] T.H. Lin and K.C. Ho, A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2006, 90, 506-520.
    [31] S.W. Huang and K.C. Ho, An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2006, 90, 491-505.
    [32] A. Elschner, F. Bruder, H.W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R.Wehrmann, PEDOT-PSS for efficient hole-injection in hybrid organic light-emitting diodes. Synthetic Metals, 2000, 111-112, 139-143.
    [33] G. Liang and T. Cui, Fabrication and characterization of poly(3,4-ethylenedioxythiophene) field-effect transistors. Solid-State Electronics, 2004, 48, 87-89.
    [34] S. Yasuteru, K. Takayuki, W. Yuji and Y. Shozo, Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synthetic Metals, 2002, 131, 185-187.
    [35] N.F. Yasuteru Saito, Rohan Senadeera, Takayuki Kitamura, Yuji Wada, Shozo Yanagida, Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochemistry Communications, 2004, 6, 71-74.
    [36] H. Yamato, M. Ohwa and W. Wernet., Stability of polyp yrrole and poly( 3,4-ethylenedioxythiophene) for biosensor application. Journal of Electroanalytical Chemistry, 1995, 397, 163-170.
    [37] F. Silvia, T.M. Canh, P. BenoıˆT, A.D. Lan, C.P. Minh and V. Olivier, Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor. Materials Science and Engineering, 2002, 21, 61–67.
    [38] G. Heywang and F. Jonas., Poly (alkylenedioxyt hiophene)sNew, Very Stable Conducting Polymers. Advanced Materials, 1992, 4, 116-118.
    [39] J.C. Carlberg and O. Inganas, Poly(3,4‐ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors. Journal of The Electrochemical Society, 1997, 144, 61-64.
    [40] R.B. Ambade, S.B. Ambade, N.K. Shrestha, R.R. Salunkhe, W. Lee, S.S. Bagde, J.H. Kim, F.J. Stadler, Y. Yamauchi and S.-H. Lee, Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 172-180.
    [41] Y. Kim, Y. Kim, S. Kim and E. Kim, Electrochromic Diffraction from Nanopatterned Poly(3-hexylthiophene). ACS Nano, 2010, 4, 5277-5284.
    [42] S.I. Cho, R. Xiao and S.B. Lee, Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) nanotubes towards fast window-type electrochromic devices. Nanotechnology, 2007, 18, 405705-405709.
    [43] C.L. Lin, C.Y. Chen, H.F. Yu and K.C. Ho, Comparisons of the electrochromic properties of Poly(hydroxymethyl 3,4-ethylenedioxythiophene) and Poly(3,4- ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Solar Energy Materials and Solar Cells, 2019, 202, 110132-110137.
    [44] S. Yang, J. Zheng, M. Li and C. Xu, A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2012, 97, 186-190.
    [45] K.M. Lee, C.Y. Hsu, P.Y. Chen, M. Ikegami, T. Miyasaka and K.C. Ho, Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 3375-3379.
    [46] V.D. Neff, Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of The Electrochemical Society, 1978, 125, 886-887.
    [47] D. Ellis, M. Eckhoff and V. D. Neff, Electrochromism in the Mixed-Valence Hexacyanides. 1. Voltammetric and Spectral Studies of the Oxidation and Reduction of Thin Films of Prussian Blue. The Journal of Physical Chemistry, 1981, 85, 1225-1231.
    [48] R.J. Mortimer and D.R. Rosseinsky., Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. Journal of Electroanalytical Chemistry, 1983, 151, 133-147.
    [49] J.W. Mccargar and V.D. Neff., Thermodynamics of Mixed-Valence Intercalation Reactions: The Electrochemical Reduction of Prussian Blue. The Journal of Physical Chemistry A, 1988, 92, 3598-3604.
    [50] K. Itaya, S. Kimio, A. Haruo and T. Shinobu, Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device. Journal of Applied Physics, 1982, 53, 804-805.
    [51] K. Itaya, T. Ataka and S. Toshima., Spectroelectrochemistry and Electrochemical Preparation Method of Prussian Blue Modified Electrodes. Journal of Analytical and Applied Chemistry, 1982, 104, 4767-4772.
    [52] K. Itaya, T. Ataka and S. Toshima., Electrochemical Preparation of a Prussian Blue Analogue: Iron-Ruthenium Cyanide. Journal of Analytical and Applied Chemistry, 1982, 104, 3751-3752.
    [53] K. Itaya, T. Ataka, S. Toshima and T. Shlnohara, Electrochemistry of Prussian Blue. An in Situ Móssbauer Effect Measurement. The Journal of Physical Chemistry A, 1982, 86, 2415-2418.
    [54] K. Itaya, I. Uchlda and S. Toshima, Mediated Electron Transfer Reactions between Redox Centers in Prussian Blue and Reactants in the Solution. The Journal of Physical Chemistry, 1983, 87, 105-112.
    [55] B.P. Jeue and G. Hage, Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide. Journal of The Electrochemical Society, 1993, 140, 3560-3564.
    [56] D. Delongchamp and P.T. Hammond, Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices. Advanced Materials, 2001, 13, 1455-1459.
    [57] D.M. Delongchamp and P.T. Hammond, High-Contrast Electrochromism and Controllable Dissolution of Assembled Prussian Blue/Polymer Nanocomposites. Advanced Functional Materials, 2004, 14, 224-232.
    [58] A. Gotoh, H. Uchida, M. Ishizaki, T. Satoh, S. Kaga, S. Okamoto, M. Ohta, M. Sakamoto, T. Kawamoto, H. Tanaka, M. Tokumoto, S. Hara, H. Shiozaki, M. Yamada, M. Miyake, and M. Kurihara, Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology, 2007, 18, 1-6.
    [59] S. Hara, H. Shiozaki, A. Omura, H. Tanaka, T. Kawamoto, M. Tokumoto, M. Yamada, A. Gotoh, M. Kurihara and M. Sakamoto, Color-Switchable Glass and Display Devices Fabricated by Liquid Processes with Electrochromic Nanoparticle “Ink”. Applied Physics Express, 2008, 1, 1040021-1040023.
    [60] K.M. Lee, H. Tanaka, A. Takahashi, K.H. Kim, M. Kawamura, Y. Abe and T. Kawamoto, Accelerated coloration of electrochromic device with the counter electrode of nanoparticulate Prussian blue-type complexes. Electrochimica Acta, 2015, 163, 288-295.
    [61] T.C. Liao, W.H. Chen, H.Y. Liao and L.C. Chen, Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells, 2016, 145, 26-34.
    [62] R.D. Rauh., Electrochromic windows: an overview. Electrochimica Acta, 1999, 44, 3165-3176.
    [63] D.R. Rosseinsky and R.J. Mortimer, Electrochromic Systems and the Prospects for Devices. Advanced Materials, 2001, 13, 783-793.
    [64] R.J. Mortimer., Electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics. Switching Colors with Electricity, 2013, 101, 38.
    [65] J.H. Bechtel and H.J. Byker, Automatic rearview mirror system for automotive vehicles. 1990, Gentex Corporation, Zeeland, Mich.
    [66] H.J. Byker, Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof, in United States Patent. 1990, Gentex Corporation, Zeeland, Mich.: Holland, Mich.
    [67] S. Green, J. Backholm, P. Georén, C.G. Granqvist and G.A. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes. Solar Energy Materials and Solar Cells, 2009, 93, 2050-2055.
    [68] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R.C. Advincula, D. Johannsmann and W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2004, 562, 95-103.
    [69] C.W. Hu, K.M. Lee, J.H. Huang, C.Y. Hsu, T.H. Kuo, D.J. Yang and K.C. Ho, Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device. Solar Energy Materials and Solar Cells, 2009, 93, 2102-2107.
    [70] J. Zhang, J.P. Tu, X.H. Xia, Y. Qiao and Y. Lu, An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 2009, 93, 1840-1845.
    [71] K.C. Ho, T.G. Rukavina and C.B. Greenberg, Tungsten oxide-prussian blue electrochromic system based on a proton-conducting polymer electrolyte. Journal of The Electrochemical Society, 1999, 141, 2061-2067.
    [72] J.Y. Wang, C.M. Yu, S.C. Hwang, K.C. Ho and L.C. Chen, Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system. Solar Energy Materials and Solar Cells, 2008, 92, 112-119.
    [73] C.F. Lin, C.Y. Hsu, H.C. Lo, C.L. Lin, L.C. Chen and K.C. Ho, A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.
    [74] Y. Watanabe, K. Imaizumi, K. Nakamura and N. Kobayashi, Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell. Solar Energy Materials and Solar Cells, 2012, 99, 88-94.
    [75] B. Oregan and M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
    [76] B.E. Hardin, H.J. Snaith and M.D. Mcgehee, The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6, 162-169.
    [77] Y. Cao, Y. Liu, S.M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule, 2018, 2, 1108-1117.
    [78] J.M. Azpiroz and F. De Angelis, DFT/TDDFT study of the adsorption of N3 and N719 dyes on ZnO(1010) surfaces. The Journal of Physical Chemistry A, 2014, 118, 5885-5893.
    [79] M. Gra1tzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005, 44, 6841-6851.
    [80] Y. Tachibana, J.E. Moser, M. Gra1tzel, D.R. Klug and J.R. Durrant, Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. The Journal of Physical Chemistry A, 1996, 100, 20056-20062.
    [81] T. Hannappel, B. Burfeindt and W. Storck, Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film. The Journal of Physical Chemistry B, 1997, 101, 6799-6802.
    [82] R.J. Ellingson, J.B. Asbury, S. Ferrere, H.N. Ghosh, J.R. Sprague, T. Lian and A.J. Nozik, Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4-dicarboxy-2,2-bipyridine)2(NCS)2] by Infrared Transient Absorption. The Journal of Physical Chemistry B, 1998, 102, 6455-6458.
    [83] A. Hagfeldt and M. Gratzel, Molecular Photovoltaics. Accounts Of Chemical Research, 2000, 33, 269-277.
    [84] G. Schlichtho1rl, S. Y. Huang, J. Sprague and A.J. Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997, 101, 8141-8155.
    [85] K. Schwarzburg and F. Willig, Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cel. The Journal of Physical Chemistry B, 1999, 103, 28.
    [86] D. Cahen, G. Hodes, M. Gra1tzel, J. Francüois and G.L. Riess., Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2000, 104, 2053-2059.
    [87] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Gra1tzel and A. J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell. The Journal of Physical Chemistry B, 1997, 101, 2576-2582.
    [88] Z.L. Wang, Self-powered nanosensors and nanosystems. Advanced Materials, 2012, 24, 280-285.
    [89] S.A. Hashemi, S. Ramakrishna and A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy & Environmental Science, 2020, 13, 685-743.
    [90] A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith and A. Listorti, Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy & Environmental Science, 2016, 9, 2682-2719.
    [91] Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao and Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2016, 60, 13-37.
    [92] C. Bechinger, S. Ferrer, A. Zaban, J. Sprague and B.A. Gregg, Photoelectrochromic windows and displays. Nature, 1996, 383, 608-610.
    [93] A. Hauch, A. Georg, S. Baumga¨Rtner, U. Opara KrasˇOvec and B. Orel, New photoelectrochromic device. Electrochimica Acta, 2001, 46, 2131-2136.
    [94] Z. Xie, X. Jin, G. Chen, J. Xu, D. Chen and G. Shen, Integrated smart electrochromic windows for energy saving and storage applications. Chemical Communications, 2014, 50, 608-610.
    [95] A. Dokouzis, K. Theodosiou and G. Leftheriotis, Assessment of the long-term performance of partly covered photoelectrochromic devices under insolation and in storage. Solar Energy Materials and Solar Cells, 2018, 182, 281-293.
    [96] J.Y. Liao and K.C. Ho, A photoelectrochromic device using a PEDOT thin film. Journal of New Materials for Electrochemical Systems, 2005, 8, 37-47.
    [97] C.Y. Hsu, K.M. Lee, J.H. Huang, K.R. Justin Thomas, J.T. Lin and K.C. Ho, A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye. Journal of Power Sources, 2008, 185, 1505-1508.
    [98] J.J Wu, M.D. Hsieh, W.P. Liao, W.T. Wu and J.S. Chen, Fast-Switching Photovoltachromic Cells with Tunable Transmittance. ACS Nano, 2009, 3, 2297-2303.
    [99] B.N. Reddy, R. Mukkabla, M. Deepa and P. Ghosal, Dual purpose poly(3,4-ethylenedioxypyrrole)/vanadium pentoxide nanobelt hybrids in photoelectrochromic cells and supercapacitors. RSC Advances, 2015, 5, 31422-31433.
    [100] Z. Jiao, J.L. Song, X.W. Sun, X.W. Liu, J.M. Wang, L. Ke and H.V. Demir, A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films. Solar Energy Materials and Solar Cells, 2012, 98, 154-160.
    [101] G. Leftheriotis, G. Syrrokostas and P. Yianoulis, Development of photoelectrochromic devices for dynamic solar control in buildings. Solar Energy Materials and Solar Cells, 2010, 94, 2304-2313.
    [102] S.N. Henriette, K. Jani and K.T. Jouko, A dye-sensitized solar cell driven electrochromic device. Photochemical & Photobiological Sciences, 2007, 6, 63-66.
    [103] A. Hauch, A. Georg, S. Baumga¨Rtner, U. Opara KrasˇOvec and B. Orel, New photoelectrochromic device. Electrochimica Acta, 2001, 46, 2131-2136.
    [104] A. Hauch, A. Georg, U.O. Krasovec and B. Orel, Photovoltaically Self-Charging Battery. Journal of The Electrochemical Society, 2002, 149, 159-163.
    [105] D.F. Giovanni, S. Mormile, F.P. Nicoletta and G. Chidichimo, Fast, self-supplied, all-solid photoelectrochromic film. Journal of Power Sources, 2010, 195, 4365-4369.
    [106] G. Leftheriotis, G. Syrrokostas and P. Yianoulis, Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics, 2013, 231, 30-36.
    [107] A. Roig, J. Navarro, J..J. Ggarcia and F. Vicente, Voltammetric study on the stability of deposited prussian blue films against successive potential cycling. Electrochimica Acta, 1994, 39, 437-442.
    [108] S.P. Kounaves, Tufts University Department of Chemistry, Voltammetric Techniques, Chapter 37.
    [109] https://pineresearch.com/shop/kb/software/methods-and-techniques/voltammetric-methods/linear-sweep-voltammetry-lsv/.
    [110] https://pineresearch.com/shop/kb/software/methods-and-techniques/potentiostatic-methods/chronoamperometry-ca/.
    [111] 林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, 化學工程學系, 國立臺灣大學, 2002.
    [112] J. Ma, S. Yuan, S. Yang, H. Lu and Y. Li, Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells. Applied Surface Science, 2018, 440, 8-15.
    [113] G. Paterakis, D. Raptis, A. Ploumistos, M. Belekoukia, L. Sygellou, M.S. Ramasamy, P. Lianos and D. Tasis, N-Doped graphene/PEDOT composite films as counter electrodes in DSSCs: Unveiling the mechanism of electrocatalytic activity enhancement. Applied Surface Science, 2017, 423, 443-450.
    [114] S. Abdelnasser, M.A. Sakr and M. Serry, Nanostructured graphene-platinum-PEDOT electrode materials for enhanced Schottky performance and power conversion applications. Microelectronic Engineering, 2019, 216, 111045-111051.
    [115] P.Y. Chen, C.T. Li, C.P. Lee, R. Vittal and K.C. Ho, PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell. Nano Energy, 2015, 12, 374-385.
    [116] G. Boschloo and A. Hagfeldt., Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1819-1826.
    [117] C.H. Wu, C.Y. Hsu, K.C. Huang, P.C. Nien, J.T. Lin and K.C. Ho, A photoelectrochromic device based on gel electrolyte with a fast switching rate. Solar Energy Materials and Solar Cells, 2012, 99, 148-153.
    [118] Y. Li, J. Hagen and D. Haarer, Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell. Synthetic Metals, 1998, 94, 273-277.
    [119] X. Wu, J. Zheng and C. Xu, Highly Optical Performance Photoelectrochromic Device Based on Br−/Br3− Electrolyte. Electrochimica Acta, 2016, 191, 902-907.
    [120] C. Bechinger, M.S. Burdis and J.G. Zhang, Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Communications, 1997, 101, 753-756.

    無法下載圖示 全文公開日期 2025/08/30 (校內網路)
    全文公開日期 2025/08/30 (校外網路)
    全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE