簡易檢索 / 詳目顯示

研究生: Nguyen Thi Quynh Hoa
Nguyen Thi Quynh Hoa
論文名稱: 錫摻雜MA2FASb2I9/奈米纖維素晶體可撓無基板無鉛複合鈣鈦礦光感測器
Flexible, Substrate-free, and Lead-free Perovskite Photodetector Based on Sn-doped MA2FASb2I9﹁/﹁Cellulose Nanocrystals Composite
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡東昇
Dung-Sheng Tsai
楊伯康
Po-Kang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 50
外文關鍵詞: lead-free, photodetectors, perovskites, substrate-free, flexible
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Photodetectors are widely used in various fields of applications such as optical communication, imaging, and biomedical sensing due to their ability to convert light signals to electrical signals. Although various perovskite materials have been studied for to exhibit photodetection behavior, their potential in commercial applications is dramatically restricted owing to the toxic lead element. Recently, lead-free perovskites have attracted scientists due to optoelectronic properties comparable with lead-based materials, including tunable bandgaps, long diffusion, and high carrier mobility. However, these perovskites are usually not stable under ambient condition, which seriously degrades the device performance. In this thesis, an organic-inorganic lead-free-based halide perovskite photodetector is studied to improve the material stability and device photoresponse. Sn-doped MA2FASb2I9 thin film is optimized by finding an ideal ratio of MAI:FAI:SbI3:SnI2. The precursor solution is mixed with cellulose nanocrystals (CNCs) solution to synthesize a paper-like light absorbing film by the vacuum filtration method. Finally, the photodetector device is fabricated by depositing interdigitated Ti/Au (5 nm/95 nm) electrodes on the film to form a stable and flexible photodetector. The flexible device based on Sn-doped MA2FASb2I9/CNCs thin film exhibits a noticeable photoresponse with a responsivity of 0.85 × 10−3 AW-1, response time of ~60 ms, and good air stability under 650 nm laser irradiation at a bias of 3 V. The photodetector device demonstrated herein holds the potential for the future development of lead-free, stable, and flexible optoelectronic applications.

    ACKNOWLEDGEMENT i ABSTRACT ii CONTENT iii LIST OF TABLES vi LIST OF FIGURES vii ABBREVIATIONS ix CHAPTER 1 INTRODUCTION 1 1.1 Photodetector overview. 1 1.2 Perovskite overview 4 1.3 Challenges, motivation, and aims 7 1.3.1 Performance 8 1.3.2 Stability 8 1.3.3 Toxicity 9 1.4 Objective 9 1.5 Thesis outline 10 CHAPTER 2 LITERATURE REVIEW 13 2.1 Introduction of hybrid metal halide perovskites 13 2.1.1 Crystal structure. 13 2.2 Photodetector general overview 16 2.2.1 Brief introduction of photodetector 16 2.2.2 Optoelectronic performance parameters of PDs 18 2.3 General of cellulose nanocrystals 19 CHAPTER 3 EXPERIMENTAL SECTION 23 3.1 Chemicals 23 3.2 Instruments 24 3.2.1 Vacuum filtration system 24 3.2.2 Electron beam evaporation system 25 3.2.3 X-ray diffractometer 26 3.2.4 UV-Vis spectrometer 27 3.2.5 Scanning electron microscope (SEM) 28 3.2.6 I-V curve and photoresponse measurement 28 3.3 Experimental process 29 3.3.1 Preparation of 1 wt% CNCs in DMF solution. 29 3.3.2 Preparation process of Sn-doped MA2FASbI9/CNC films 29 3.3.3 Fabrication of the photodetector device 31 CHAPTER 4 RESULTS AND DISCUSSION 32 4.1 General properties and mechanism 32 4.2 Optical properties analysis 33 4.2.1 UV-Vis absorbance spectrum of Sn-doped MA2FASb2I9/CNCs. 33 4.2.2 I-V curve and responsivity 35 4.2.3 Time photoresponse 37 4.2.4 External quantum efficiency (EQE) 38 4.3 Stability and bending test 39 4.4 XRD analysis 40 4.5 Scanning Electron Microscopy (SEM) image and Energy-Dispersive X-ray Spectroscopy (EDS) 41 4.6 Comparison 42 CHAPTER 5 CONCLUSION AND FUTURE PLANS 44 5.1 Conclusion 44 5.2 Future plans 45 REFERENCES 46

    [1] H. Hertz, Ueber einen einfluss des ultravioletten Lichtes auf die electrische entladung, Annalen der Physik 267(8) (1887) 983-1000.
    [2] J.M. Norman, Willoughby Smith Discovers the photoconductivity of selenium, (2024).
    [3] Q. Evangelist, A brief history of the transistor and integrated circuit, (2023).
    [4] R.F. Davis, III-V nitrides for electronic and optoelectronic applications, Proceedings of the IEEE 79(5) (1991) 702-712.
    [5] T. Wang, D. Zheng, K. Vegso, G. Baillard, P. Nadazdy, N. Mrkyvkova, P. Siffalovic, Y. Chen, L. Coolen, T. Pauporté, A dual strategy to enhance the photoelectric performance of perovskite-based photodetectors for potential applications in optical communications, Chemical Engineering Journal 488 (2024) 151068.
    [6] J.-H. Park, H.-R. Kim, M.-J. Kang, D.H. Son, J.-C. Pyun, Trends in defect passivation technologies for perovskite-based photosensor, Journal of the Korean Ceramic Society 61(1) (2024) 15-33.
    [7] N. Goel, A. Kushwaha, M. Kwoka, M. Kumar, Strategic review of organic–inorganic perovskite photodetectors, Physica Status Solidi (RRL)–Rapid Research Letters.
    [8] Semiconductor market size projected to reach USD 1,883.7 billion by 2032, (2023).
    [9] Y. Zhang, Y. Ma, Y. Wang, X. Zhang, C. Zuo, L. Shen, L. Ding, Lead‐free perovskite photodetectors: progress, challenges, and opportunities, Advanced Materials 33(26) (2021) 2006691.
    [10] C. Li, J. Li, Z. Li, H. Zhang, Y. Dang, F. Kong, High-performance photodetectors based on nanostructured perovskites, Nanomaterials 11(4) (2021) 1038.
    [11] A.A. Hussain, Constructing caesium-based lead-free perovskite photodetector enabling self-powered operation with extended spectral response, ACS Applied Materials & Interfaces 12(41) (2020) 46317-46329.
    [12] W. Liang, L. Wang, Y. Li, F. Zhang, X. Chen, D. Wu, Y. Tian, X. Li, C. Shan, Z. Shi, Stable and ultraviolet-enhanced broadband photodetectors based on Si nanowire arrays-Cs3Cu2I5 nanocrystals hybrid structures, Materials Today Physics 18 (2021) 100398.
    [13] S. Du, W. Lu, A. Ali, P. Zhao, K. Shehzad, H. Guo, L. Ma, X. Liu, X. Pi, P. Wang, A broadband fluorographene photodetector, Advanced Materials 29(22) (2017) 1700463.
    [14] R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng, J. Huang, High‐gain and low‐driving‐voltage photodetectors based on organolead triiodide perovskites, Advanced Materials 27(11) (2015) 1912-1918.
    [15] Y. Zou, T. Zou, C. Zhao, B. Wang, J. Xing, Z. Yu, J. Cheng, W. Xin, J. Yang, W. Yu, A highly sensitive single crystal perovskite–graphene hybrid vertical photodetector, Small 16(25) (2020) 2000733.
    [16] Z. Fan, J. Liu, W. Zuo, G. Liu, X. He, K. Luo, Q. Ye, C. Liao, Solution‐processed MAPbBr3 and CsPbBr3 single‐crystal detectors with improved X‐ray sensitivity via interfacial engineering, Physica Status Solidi (a) 217(9) (2020) 2000104.
    [17] Z. Zhang, G. Liu, W. Guo, X. Li, Y. Zhang, C. Wu, B. Qu, J.-j. Shi, Z. Chen, L. Xiao, Black single crystals of lead-free perovskite Cs2Ag(Bi:Ru)Br6 with an intermediate band, Materials Advances 3(12) (2022) 4932-4937.
    [18] J.W. Lim, H. Wang, C.H. Choi, H. Kwon, L.N. Quan, W.-T. Park, Y.-Y. Noh, D.H. Kim, Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability, Nano Energy 57 (2019) 761-770.
    [19] S. Stepanov, R. Palamarchuk, A. Kutyrev, E. Lepekhina, L. Sharpenok, E. Shagalov, E. Minervina, Nature of perovskite mineralization of silicate-carbonate veins in the margins of kusinsko-kopanskaya layered intrusion (South Urals, Russia), Minerals 14(5) (2024) 478.
    [20] M. Vivar, H. Sharon, M. Fuentes, Photovoltaic system adoption in water related technologies–A review, renewable and sustainable energy reviews 189 (2024) 114004.
    [21] S. Chang, J.H. Koo, J. Yoo, M.S. Kim, M.K. Choi, D.-H. Kim, Y.M. Song, Flexible and stretchable light-emitting diodes and photodetectors for human-centric optoelectronics, Chemical Reviews (2024).
    [22] S. Dwik, G. Sasikala, S. Natarajan, Advancements and applications of position-sensitive detector (PSD): a review, Optoelectronics Letters 20(6) (2024) 330-338.
    [23] J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, G. Zhao, L. Zhang, Perovskite CsPbBr3 crystals: growth and applications, Journal of Materials Chemistry C 8(19) (2020) 6326-6341.
    [24] Z. Lian, Q. Yan, Q. Lv, Y. Wang, L. Liu, L. Zhang, S. Pan, Q. Li, L. Wang, J.-L. Sun, High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal, Scientific Reports 5(1) (2015) 16563.
    [25] Y. Zhang, Y. Liu, Z. Yang, S.F. Liu, High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector, Journal of Energy Chemistry 27(3) (2018) 722-727.
    [26] R. Saraf, V. Maheshwari, Self-powered photodetector based on electric-field-induced effects in MAPbI3 perovskite with improved stability, ACS Applied Materials & Interfaces 10(25) (2018) 21066-21072.
    [27] B. Chen, X. Zheng, Y. Bai, N.P. Padture, J. Huang, Progress in tandem solar cells based on hybrid organic–inorganic perovskites, Advanced Energy Materials 7(14) (2017) 1602400.
    [28] W. Tian, H. Zhou, L. Li, Hybrid organic–inorganic perovskite photodetectors, Small 13(41) (2017) 1702107.
    [29] T. Ishihara, J. Takahashi, T. Goto, Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+ 1NH3)2PbI4, Physical Review B 42(17) (1990) 11099.
    [30] Y. Zhang, J. Du, X. Wu, G. Zhang, Y. Chu, D. Liu, Y. Zhao, Z. Liang, J. Huang, Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films, ACS Applied Materials & Interfaces 7(39) (2015) 21634-21638.
    [31] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science 342(6156) (2013) 344-347.
    [32] F. Yang, K. Zhu, Advances in mixed tin‐lead narrow‐bandgap perovskites for single‐junction and all‐perovskite tandem solar cells, Advanced Materials (2024) 2314341.
    [33] M. Zhu, L. Qin, Y. Xia, J. Liang, Y. Wang, D. Hong, Y. Tian, Z. Tie, Z. Jin, Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells, Nano Research 17(3) (2024) 1508-1515.
    [34] J. Wen, K. Rong, L. Jiang, C. Wen, B. Wu, B. Sa, Y. Qiu, R. Ahuja, Copper-based perovskites and perovskite-like halides: A review from the perspective of molecular level, Nano Energy (2024) 109802.
    [35] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots, ACS Nano 11(9) (2017) 9294-9302.
    [36] B. Pradhan, G.S. Kumar, S. Sain, A. Dalui, U.K. Ghorai, S.K. Pradhan, S. Acharya, Size tunable cesium antimony chloride perovskite nanowires and nanorods, Chemistry of Materials 30(6) (2018) 2135-2142.
    [37] Y. Lei, S. Wang, J. Xing, H. Xu, J. Han, W. Liu, High-performance UV–Vis photodetectors based on a Lead-free hybrid perovskite crystal (MV)[SbI3Cl2], Inorganic Chemistry 59(7) (2020) 4349-4356.
    [38] K. Ahmad, T. Niyitanga, A. Chaudhary, W. Raza, R.A. Khan, H. Kim, Hydrothermal synthesis of MA3Sb2I9 for hydrogen production applications, ChemPhotoChem 7(12) (2023) e202300104.
    [39] B. Las-Casas, I.K. Dias, S.L. Yupanqui-Mendoza, B. Pereira, G.R. Costa, O.J. Rojas, V. Arantes, The emergence of hybrid cellulose nanomaterials as promising biomaterials, International Journal of Biological Macromolecules (2023) 126007.
    [40] L. Tao, W. Tang, M. Yan, L. Ding, J. Wei, L. Wang, L. Li, L. Li, D. Yang, Y. Fang, Construction of chiral-2D/3D perovskite heterojunction films for efficient circularly polarized light detection, Journal of Materials Chemistry C 11(36) (2023) 12392-12399.
    [41] C. Ji, P. Wang, Z. Wu, Z. Sun, L. Li, J. Zhang, W. Hu, M. Hong, J. Luo, Inch‐size single crystal of a Lead‐free organic–inorganic hybrid perovskite for high‐performance photodetector, Advanced Functional Materials 28(14) (2018) 1705467.
    [42] D. Liu, B.-B. Yu, M. Liao, Z. Jin, L. Zhou, X. Zhang, F. Wang, H. He, T. Gatti, Z. He, Self-powered and broadband lead-free inorganic perovskite photodetector with high stability, ACS Applied Materials & Interfaces 12(27) (2020) 30530-30537.
    [43] A. Ara, J.A. Usmani, Lead toxicity: a review, Interdisciplinary Toxicology 8(2) (2015) 55-64.
    [44] W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications, Nature Energy 1(6) (2016) 1-8.
    [45] F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard, K. Zhu, Advances in two-dimensional organic–inorganic hybrid perovskites, Energy & Environmental Science 13(4) (2020) 1154-1186.
    [46] C. Chen, X. Zhao, Y. Gong, Y. Liu, Z. Chen, L. Zhang, J. Chen, Z. Deng, H. Lu, M. Luo, Two-dimensional hybrid dion–jacobson germanium halide perovskites, Chemistry of Materials 35(8) (2023) 3265-3275.
    [47] M. Liao, B.B. Yu, Z. Jin, W. Chen, Y. Zhu, X. Zhang, W. Yao, T. Duan, I. Djerdj, Z. He, Efficient and stable FASnI3 perovskite solar cells with effective interface modulation by low‐dimensional perovskite layer, ChemSusChem 12(22) (2019) 5007-5014.
    [48] W. Ke, C.C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen, M.R. Wasielewski, M.G. Kanatzidis, Efficient lead-free solar cells based on hollow MASnI3 perovskites, Journal of the American Chemical Society 139(41) (2017) 14800-14806.
    [49] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, B. Wang, Recent progress in organometal halide perovskite photodetectors, Organic Electronics 52 (2018) 172-183.
    [50] R.G. Stearns, R.L. Weisfield, Two-dimensional amorphous-silicon photoconductor array for optical imaging, Applied Optics 31(32) (1992) 6874-6881.
    [51] O. Corporation, The rise time gadget (Pro only).
    [52] F. Danafar, Recent development and challenges in synthesis of cellulosic nanostructures and their application in developing paper-based energy devices, Cellulose Chemistry and Technology 54(3-4) (2020) 327-346.
    [53] Y. Qi, Y. Guo, A.A. Liza, G. Yang, M.H. Sipponen, J. Guo, H. Li, Nanocellulose: a review on preparation routes and applications in functional materials, Cellulose 30(7) (2023) 4115-4147.
    [54] T.I.A. Almas Bashir, Aqsa Tehseen, Muhammad Bilal Tahir, Mohsin Ijaz, Chapter 3: Interfaces and surfaces, Chemistry of Nanomaterials (2020) 51-87.
    [55] D. Ju, X. Jiang, H. Xiao, X. Chen, X. Hu, X. Tao, Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA3Sb2I9, Journal of Materials Chemistry A 6(42) (2018) 20753-20759.
    [56] Y. Niu, M. Zhang, X. Jiang, P. Lv, X. Liu, Z. Chen, X. Tao, Acquiring bulk photovoltaic effect in one-dimensional Sn-based perovskite single crystals by nonlinear organic diamine, ACS Materials Letters 6 (2023) 115-122.
    [57] I. Biswas, A. Dey, A. Dalal, S. Saha, J.-M. Nunzi, A. Mondal, Stable, self-biased Cs2AgBiBr6 thin-film based photodetector by three-step vapor-deposition, Journal of Alloys and Compounds (2023) 172903.
    [58] T. Li, J. Wang, Z. Gao, P. Lv, Y. Yang, J. Wu, J. Hong, X. Wang, Y. Zhou, Local stress enhanced photocurrent of visible light photo-detection in Cs2AgBiBr6 single crystal, Applied Physics Letters 115(13) (2019).
    [59] W. Wang, S. Xu, Z. Lai, X. Feng, H. Qi, Q. Pan, Z. Yang, J. Kang, Y. Li, X. Shu, Regulating the microscopic structure of solutions to synthesize centimeter-sized low-dimensional CsmSbnClm+3n perovskite single crystals for visible-blind ultraviolet photodetectors, Inorganic Chemistry Frontiers (2024).
    [60] A.A. Hussain, A.K. Rana, M. Ranjan, Air-stable lead-free hybrid perovskite employing self-powered photodetection with an electron/hole-conductor-free device geometry, Nanoscale 11(3) (2019) 1217-1227.

    無法下載圖示 全文公開日期 2034/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2034/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE