簡易檢索 / 詳目顯示

研究生: 林峻毅
Jyun-Yi Lin
論文名稱: 使用有限域建構準循環低密度同位檢查碼在馬可夫高斯雜訊通道之研究
A study of Finite Field -based Quasi-cyclic LDPC Codes over Markov Gaussian Channels
指導教授: 曾德峰
Der-Feng Tseng
口試委員: 曾恕銘
Shu-Ming Tseng
賴坤財
Kuen-Tsair Lay
張立中
Li-Chung Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 低密度同位檢查碼馬可夫高斯有限域準循環和積演算法MAP估測器
外文關鍵詞: Low-Density Parity Check Codes, Markov-Gaussian, Finite Field, Quasi-cyclic, Sum-Product Algorithm, MAP Estimation
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討在馬可夫高斯通道下不同碼率低密度同位檢查碼(LDPC)的表現
    。我們是基於有限域的加法組(Additive Group)來建構同位檢查矩陣的,其矩陣為一個準循環的形式。並分別在不同通道環境中模擬。建立在有限域的低密度同位檢查碼,其在可加性高斯白雜訊(AWGN)通道下擁有很好的表現,更重要的是,這種有限域低密度同位檢查碼被證明具有低的錯誤層次(error floor),此種特性對於通訊或資料儲存系統相當重要。而大部分建立在有限域的低密度同位檢查碼是準循環的,因此能夠利用簡單的位移暫存器[1]進行編碼且具有低的線性複雜度[2]。在對於有線或無線通訊中,脈衝雜訊是一個重要的議題。由於常見的脈衝雜訊通道模型,屬於無記憶性型,其發生雜訊的時機具有隨機性,無法去描述真實通道的特性,故發展出基於馬可夫鏈特性的雜訊碼可夫高斯通道模型(Markov-Gaussian Channel)。
    為了解決脈衝雜訊,在本論文中使用了基於有限域的QC¬-LDPC結合了最大後驗機率(MAP)來進行通道估測並且利用和使用積演算法(SPA)進行解碼以降低位元錯誤率。


    In this paper, we study the performance of LDPC code which have different Coding rate over Markov-Gaussian channels. We construct parity check matrices base on subgroups of a finite field, and its matrix is a quasi-cyclic form. And simulation in different channel environment. LDPC code which based on finite fields perform well over the binary-input AWGN channel. Most importantly, these finite-field LDPC codes were shown to have low error floors, which is important for communication and data-storage systems. Most of the LDPC code constructions base on finite fields are quasi-cyclic and hence they can be efficiently encoded using simple shift-registers[1] with linear complexity[2]. In the wired and wireless communication systems Impulse noise is a important issue . The common impulse noise models. they are memoryless, which mean that their occurrences are random. However, they can’t describe the characteristics of the real channel. A memory channel such as Markov-Gaussian is introduced to address the characteristics of the real channel.
    To address the impulsive noise, QC-LDPC base on finite field is used in this paper to combine the maximum a posteriori (MAP) Estimation for channel estimation and use the SPA algorithm to reduce the bit error rate.

    第1章 序論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 本文架構 3 第2章 低密度同位檢查碼 4 2.1 低密度同位檢查碼(LOW-DENSITY PARITY CHECK CODE) 4 2.1.1 低密度同位檢查碼基本概念 4 2.2 基於有限域建構QC-LDPC 7 2.2.1 有限域的基本概念 7 2.2.2 利用有限域建構QC-LDPC碼的原型架構 9 2.2.3 如何從W矩陣中得到QC-LDPC的同位檢查矩陣 12 2.2.4 利用有限域加法組建構QC-LDPC碼 13 2.2.5 用於同位檢查矩陣的MASKING方法 16 2.3 LDPC碼的編碼與解碼 19 2.3.1 LDPC碼的編碼方法 19 2.3.2 LDPC碼的解碼方法 25 第3章 脈衝雜訊下的系統架構與通道估測 27 3.1 脈衝雜訊的創建 27 3.1.1 Markov-Gaussiana脈衝雜訊模型 27 3.1.2 通道的記憶性 29 3.2 系統架構 30 3.2.1 編碼器 31 3.2.2 交織器(Interleaver) 32 3.3 脈衝雜訊通道下LDPC碼的兩種解碼器 33 3.3.1 Optimum 解碼器 33 3.3.2 Refined解碼器 36 第4章 模擬結果 41 4.1 馬可夫高斯通道下的模擬結果 41 4.1.1 不同參數的馬可夫高斯通道的模擬結果 42 4.1.2 不同迭代次數於馬可夫通道的模擬結果 46 4.1.3 LDPC不同的同位檢查矩陣建構方式於馬可夫通道的效能表現 48 4.2 有限域QC-LDPC和5G協定使用的LDPC於馬可夫通道之比較 51 4.2.1 有限域QC-LDPC和5G使用的LDPC設計建構方式比較 51 4.2.2 AWGN通道效能比較 55 4.2.3 Markov-Gaussian通道效能比較 57 第5章 結論與未來研究方向 60 5.1 結論 60 5.2 未來研究方向 60 參考文獻 61

    [1] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University Press, 2009.
    [2] Song, S., B. Zhou, S. Lin, and K. Abdel-Ghaffar. "A Unified Approach to the Construction of Binary and Nonbinary Quasi-Cyclic Ldpc Codes Based on Finite Fields." IEEE Transactions on Communications 57, no. 1 (2009): 84-93.
    [3] C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 4, pp. 623-656, 1948.
    [4] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley, 2005.
    [5] R. Tanner, "A recursive approach to low complexity codes," IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533-547, 1981.
    [6] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, "Design of capacity-approaching irregular low-density parity-check codes," IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 619-637, 2001
    [7] I. Ullah and S. Noor, Construction and Performance Evaluation of QC-LDPC Codes over Finite Fields, Blekinge Institute of Technology,pp.44-39,2010
    [8] J. Li, K. Liu, S. Lin, K. Abdel-Ghaffar, "Algebraic Quasi-Cyclic LDPC Codes: Construction, Low Error-Floor, LargeGirth and a Reduced-Complexity Decoding Scheme," IEEE Transactions on Communications, vol. 62, no. 8, pp. 2626-2637, 2014
    [9] T. Richardson and R. Urbanke, “Efficient encoding of Low-DensityParity-Check Codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, 2001.
    [10] M. Chiani, A. Conti, and A. Ventura, “Evaluation of Low-Density Parity-Check Codes Over Block Fading Channels,” IEEE Conf. Commun., vol.3 pp. 1183–1187, June. 2000.
    [11] P. Banelli, "Bayesian Estimation of a Gaussian Source in Middleton's Class-A Impulsive Noise," IEEE Signal Processing Letters, vol. 20, no. 10, pp. 956-959, 2013.
    [12] Fathi L, Jourdain G, Arndt M, editors. A Bernoulli-Gaussian model for multipath channel estimation in downlink WCDMA. IEEE/SP 13th Workshop on Statistical Signal Processing, 2005; 2005 17-20 July 2005.
    [13] A. William Eckford, Low-Density Parity-Check Codes for Gilbert Elliot and Markov- Modulated Channels, University of Toronto,2004
    [14] M. Seho, Y. Kyeongcheol, and K. Jaeyoel, "Quasi-cyclic LDPC codes for fast encoding," IEEE Transactions on Information Theory, vol. 51, no. 8, pp. 2894-2901, 2005
    [15] D. Fertonani, A. Barbieri, and G. Colavolpe, "Reduced-Complexity BCJR Algorithm for Turbo Equalization," IEEE Transactions on Communications, vol. 55, no. 12, pp. 2279-2287, 2007.
    [16] R. J. McEliece, "On the BCJR trellis for linear block codes," IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1072-1092, 1996.
    [17] F. H. Wijaya, "Low-Density Parity Check Decoding Over Markov Gaussian Channel," 碩士論文--國立臺灣科技大學電機工程系, 2015.
    [18] C.Y. Xiao, "A study of Euclidean Geometry-based Quasi-cyclic LDPC Codes over Memory Impulse Channels ," 碩士論文--國立臺灣科技大學電機工程系, 2018.
    [19] 3GPP TSG RAN 15 NR,TS 38.212 v15.1.1, " Multiplexing and channel coding",April 2018
    [20] Richardson, T., and S. Kudekar. "Design of Low-Density Parity Check Codes for 5g New Radio." IEEE Communications Magazine 56, no. 3 (2018): 28-34.

    無法下載圖示 全文公開日期 2023/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE