簡易檢索 / 詳目顯示

研究生: Muhammad Ridwan
Muhammad Ridwan
論文名稱: 具容錯永磁同步電動機驅動系統的週期性速度控制器及電流估測器研製
Design and Implementation of a Periodic Speed Controller and Current Estimator for a Fault-Tolerant PMSM Drive System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
Chang-Ming Liaw
楊勝明
Sheng-Ming Yang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 126
中文關鍵詞: 容錯驅動系統週期性控制永磁同步電動機速度控制電流估測器
外文關鍵詞: fault-tolerant drive system, periodic control, PMSM, current estimation, speed control
相關次數: 點閱:455下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討週期性速度控制器及滑動模式電流預測器應用於具容錯功能的永磁同步電動機驅動系統,故障的狀態包括變頻器的一個功率開關開路或短路,或霍爾效應電流偵測元件故障。經由使用週期性速度控制器,此驅動系統具有較使用比例積分速度控制器驅動系統更快速的暫態響應及加載響應。詳細的週期性控制器設計及容錯驅動系統,包括:錯誤偵測、診斷、控制,均在論文中討論。
此外,並探討一個滑動模式電流估測器用以估測電動機的定子電流。當霍爾效應檢知器故障時,此估測的定子電流用來取代量測的電流。文中使用32位元,TMS-320F-2808的數位信號處理器來執行容錯方法及週期性控制法則,驗証實測結果與理論分析的正確性。


This thesis proposes a periodic speed controller and a sliding-mode current estimator for fault-tolerant permanent magnet synchronous motor drive systems. The fault-tolerant conditions including one power switch open-circuit, one power switch short-circuit, or one Hall-effect current sensor fault. By using the speed-loop periodic controller, the drive system has better performance, including faster transient responses and better load disturbance responses than a speed-loop PI controller drive system. The detailed design of the periodic controller and the fault-tolerant drive system, including fault detection, diagnosis, and control are included.
In addition, a sliding mode current estimator is investigated to estimate the stator current. The estimated current is used to replace the measured current when a Hall-effect current sensor is faulty. A 32-bit digital signal processor, type TMS-320F-2808, is used to execute the fault-tolerant algorithm and periodic control algorithm. Experimental results show the measured results can validate the correctness of the theoretical analysis.

TABLE OF CONTENTS .................................................................................................................Page ABSTRACT........................................................................................................... vi 中文摘要............................................................................................................... vii NOMENCLATURE............................................................................................... ix TABLE OF CONTENTS...................................................................................... xii LIST OF FIGURES .............................................................................................. xv LIST OF TABLE ............................................................................................... xviii CHAPTER I INTRODUCTION............................................................................ 1 1.1 Background........................................................................................... 1 1.2 Introduction of Periodic Controller....................................................... 2 1.3 Literature Review ................................................................................. 2 1.4 Contribution.......................................................................................... 4 1.5 Thesis Organization .............................................................................. 4 CHAPTER II PERMANENT MAGNET SYNCHRONOUS MOTOR................ 5 2.1 Introduction........................................................................................... 5 2.2 Structure................................................................................................ 5 2.3 Mathematical Model ............................................................................. 7 2.3.1 Mathematical model in a-b-c axis frame................................... 7 2.3.2 Mathematical model d-q axis frame ........................................ 10 CHAPTER III FAULT-TOLERANT METHOD................................................ 12 3.1 Introduction......................................................................................... 12 3.2 Fault-Tolerant Inverter........................................................................ 13 3.3 Fault-Tolerant Detection..................................................................... 17 3.4 Fault-Tolerant Diagnosis .................................................................... 19 3.5 Fault-Tolerant Control ........................................................................ 22 xiii CHAPTER IV CONTROLLER DESIGN........................................................... 25 4.1 Introduction......................................................................................... 25 4.2 Current-Loop PI Controller ................................................................ 26 4.2.1 Current-Loop PI Controller Structure...................................... 27 4.2.2 Current-Loop PI Controller Design ......................................... 29 4.3 Speed-Loop PI and Periodic Controllers ............................................ 32 4.3.1 Speed-Loop PI Controller Design............................................ 33 4.3.2 Speed-Loop Periodic Controller Design.................................. 39 CHAPTER V CURRENT ESTIMATOR AND ADAPTIVE THRESHOLD..... 47 5.1 Introduction......................................................................................... 47 5.2 Current Estimator................................................................................ 48 5.3 Adaptive Threshold............................................................................. 51 CHAPTER VI IMPLEMENTATION.................................................................. 56 6.1 Introduction......................................................................................... 56 6.2 Simulation........................................................................................... 57 6.3 Hardware............................................................................................. 59 6.3.1 Permanent Magnet Synchronous Motor .................................. 59 6.3.2 Three-Phase Inverter................................................................ 59 6.3.3 TRIAC ..................................................................................... 61 6.3.4 Current Sensing Circuit ........................................................... 62 6.3.5 DC-Link Current Sensing Circuit ............................................ 63 6.3.6 Overcurrent Protection Circuit................................................. 64 6.3.7 Encoder Circuit ........................................................................ 64 6.3.8 Digital Signal Processor........................................................... 65 6.4 Software Design.................................................................................. 66 6.4.1 Main Program.......................................................................... 67 xiv 6.4.2 Interrupt and Sub-routine Programs ........................................ 68 CHAPTER VII SIMULATION AND EXPERIMENTAL RESULTS ............... 75 7.1 Introduction......................................................................................... 75 7.2 Simulation Results .............................................................................. 76 7.3 Experimental Results .......................................................................... 78 CHAPTER VIII CONCLUSIONS AND FUTURE RESEARCH .................... 101 8.1 Conclusions....................................................................................... 101 8.2 Future Research ................................................................................ 101 REFERENCES.................................................................................................... 102 BIOGRAPHY ..................................................................................................... 108

[1] T. Ruff, P. Coleman, and L. Martini, “Machine-related injuries in the US mining industry and priorities for safety research,” Int. J. Inj. Contr. Saf. Promot., vol. 18, no. 1, pp. 11–20, 2011.
[2] W. Zhao, D. D. C. Lu, and V. G. Agelidis, “Current control of grid-connected boost inverter with zero steady-state error,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2825–2834, 2011.
[3] S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, 2012.
[4] H. Ouyang, K. Zhang, P. Zhang, Y. Kang, and J. Xiong, “Repetitive compensation of fluctuating DC link voltage for railway traction drives,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2160–2171, 2011.
[5] N. Yurong, Y. Li, C. Zongyun, and W. Aili, “Study on repetitive controller for the position servo system of electrical injection molding machine,” Proc. World Congr. Intell. Control Autom., vol. 2, pp. 8246–8250, 2006.
[6] Y. Cho and J. S. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165–175, 2013.
[7] T. H. Liu, S. K. Tseng, and Y. C. Tu, “Design and implementation of predictive controllers for dual-permanent magnet synchronous motor drive systems,” J. Eng., vol. 2017, no. 12, pp. 616–626, 2017.
[8] T. Liu, M. S. Mubarok, A. M. Model, and I. Control, “Predictive controller design for a matrix-converter based IPMSM position control system,” 2018 IEEE 27th Int. Symp. Ind. Electron., pp. 161–166.
[9] U. K. Madawala, T. H. Liu, and P. C. Pan, “Adaptive controller with an improved high-frequency injection technique for sensorless synchronous reluctance drive systems,” IET Electr. Power Appl., vol. 10, no. 4, pp. 240–250, 2016.
103
[10] Z. Zhou, C. Xia, Y. Yan, Z. Wang, and T. Shi, “disturbances attenuation of permanent magnet synchronous motor drives using cascaded predictive-integral-resonant controllers,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1514–1527, 2018.
[11] W. Lu, K. Zhou, and Y. Yang, “Robust repetitive control scheme for three-phase constant voltage constant frequency pulse-width-modulated inverters,” IET Power Electron., vol. 5, no. 6, pp. 669–677, 2012.
[12] R. R. Errabelli and P. Mutschler, “Fault-tolerant voltage source inverter for permanent magnet drives,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 500–508, 2012.
[13] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan, and E. Firmansyah, “Fault-tolerance control for a dual-PMSM drive system,”IEEE IFEEC 2015, vol. 2016, pp. 344–351, 2015.
[14] A. Kontarcek, P. Bajec, M. Nemec, V. Ambrozic, and D. Nedeljkovic, “cost-effective three-phase PMSM drive tolerant to open-phase fault,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6708–6718, 2015.
[15] B. Lu and S. K. Sharma, “A literature review of IGBT fault diagnostic and protection methods for power inverters,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1770–1777, 2009.
[16] H. Lin, H. Li, Y. Wang, M. Li, P. Wen, and C. Zhang, “On inverter fault-tolerant operation vector control of a PMSM drive,” Proc. - 2009 IEEE Int. Conf. Intell. Comput. Intell. Syst. ICIS 2009, vol. 2, no. 3, pp. 522–526, 2009.
[17] A. Kontarček, M. Nemec, P. Bajec, and V. Ambrožič, “Single Open-phase Fault Detection with Fault-Tolerant Control of an Inverter-fed Permanent Magnet Synchronous Machine,” Autom. ‒ J. Control. Meas. Electron. Comput. Commun., vol. 55, no. 4, 2014.
[18] T. Hornik and Q. C. Zhong, “A current-control strategy for voltage-source inverters in microgrids based on H∞and Repetitive Control,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 943–952, 2011.
[19] W. Zhu, K. Zhou, M. Cheng, and F. Peng, “A high-frequency-link single-phase PWM Rectifier,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 289–298, 2015.
104
[20] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan, and E. Firmansyah, “Implementation of on-line maximum efficiency control for a dual-motor drive system,” IEEE IECON-2014, pp. 655–660, 2014.
[21] D. F. Chen, K. Nguyen-Duy, T. H. Liu, and M. A. E. Andersen, “A fault-tolerant modulation method to counteract the double open-switch fault in matrix converter drive systems without redundant power devices,” IEEE IPEC-2012, no. 1, pp. 65–70, 2012.
[22] D. R. Espinoza-Trejo and D. U. Campos-Delgado, “Active fault tolerant scheme for variable speed drives under actuator and sensor faults,” IEEE ICCA-2008, pp. 474–479, 2008.
[23] Campos Delgado, D. R. Espinoza-Trejo, and E. Palacios, “Fault Tolerant Control in Variable Speed Drives: A Survey,” IET Electr. Power Appl., vol. 1, no. 5, pp. 643–656, 2007.
[24] A. B. M. Oliveira, R. L. Moreno, and E. R. Ribeiro, “Digital short-circuit diagnosis and reconfiguration of a fault tolerant VSI,” IEEE SPEC-2017, vol. 2018–Janua, pp. 1–6, 2018.
[25] T. H. Liu and Y. C. Tu, “Predictive Model-based Speed Controller and Model-Free Current Controller in a Fault-Tolerant PMSM Drive,” IEEE ISIE-2018, pp. 167–172.
[26] Q. T. An, L. Sun, and L. Z. Sun, “Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2814–2827, 2015.
[27] T. H. Liu, H. S. Haslim, and S. K. Tseng, “Predictive controller design for a high-frequency injection sensorless synchronous reluctance drive system,” IET Electr. Power Appl., vol. 11, no. 5, pp. 902–910, 2017.
[28] J. L. Chen and T. H. Liu, “An IPMSM position control system using high frequency injection sensorless technique,” IEEE IECON-2012, no. 5, pp. 3676–3681, 2012.
[29] Y. Chen, T. H. Liu, and C. M. Nguyen, “Nonlinear controller design for a sensorless matrix-converter IPMSM drive system,” IEEE IECON-2015, pp. 13–18, 2015.
105
[30] T. H. Liu, Y. Chen, and N. M. Cuong, “Implementation of sensorless DC-link capacitorless inverter-based interior permanent magnet synchronous motor drive via measuring switching-state current ripples,” IET Electr. Power Appl., vol. 10, no. 3, pp. 197–207, 2016.
[31] G. F. H. Beng, X. Zhang, and D. M. Vilathgamuwa, “Sensor fault-resilient control of interior permanent-magnet synchronous motor drives,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 855–864, 2015.
[32] R. Han, T. Wang, Q. Wang, Y. Zheng, and L. Dong, “Analysis of shunt over range measurement errors based on finite element method,” IEEE ICST-2016, pp. 1354–1358, 2016.
[33] I. Jlassi, J. O. Estima, S. K. El Khil, N. M. Bellaaj, and A. J. M. Cardoso, “A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2894–2905, 2017.
[34] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan, and E. Firmansyah, “Fault-tolerance control for a dual-PMSM drive system,” IEEE IFEEC-2015, 2015.
[35] R. Isermann, Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer-Verlag Berlin, 2011.
[36] H. Berriri, M. W. Naouar, and I. Slama-Belkhodja, “Easy and fast sensor fault detection and isolation algorithm for electrical drives,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 490–499, 2012.
[37] F. Meinguet, P. Sandulescu, X. Kestelyn, and E. Semail, “A method for fault detection and isolation based on the processing of multiple diagnostic indices: Application to inverter faults in AC drives,” IEEE Trans. Veh. Technol., vol. 62, no. 3, pp. 995–1009, 2013.
[38] C. Cecati, A. O. Di Tommaso, F. Genduso, R. Miceli, and G. R. Galluzzo, “Comprehensive modeling and experimental testing of fault detection and management of a nonredundant fault-tolerant VSI,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3945–3954, 2015.
[39] D. Wang, Periodic Control of Power Electronic Converters Periodic Control of Power, CPI Group Ltd, UK, October 2016.
106
[40] K. Zhou and D. Wang, “Digital repetitive learning controller for three-phase CVCF PWM inverter,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 820–830, 2001.
[41] D. W. Bin Zhang, Keliang Zhou, Yigang Wang, “Performance improvement of repetitive controlled PWM inverters: A phase-lead compensation solution,” Int. J. Circuit Theory Appl., vol. 38, no. 7, pp. 689–708, 2010.
[42] B. Zhang, D. Wang, K. Zhou, and Y. Wang, “Linear phase lead compensation repetitive control of a CVCF PWM inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1595–1602, 2008.
[43] L. Wang, PID Control System Design for Electrical Drives and Power, John Wiley & Sons Singapore Pte. Ltd., 2015.
[44] G. F. Franklin, D. J. Powell, and M. L. Workman, Digital control of dynamic systems. Addison Wesley Longman. Inc., CA, USA. 1997.
[45] S. Winder, Analog and Digital Filter Design, vol. 34, no. 7. Elsevier Science, USA. 2012.
[46] V. C. Ilioudis and N. I. Margaris, “Sensorless sliding mode observer based on rotor position error for salient-pole PMSM,” Comput. Eng., pp. 1517–1522, 2009.
[47] V. C. Ilioudis and N. I. Margaris, “PMSM sensorless speed estimation based on sliding mode observers,” IEEE PESC-2008, pp. 2838–2843, 2008.
[48] E. Bárcenas, L. F. Lugo-Cordero, D. U. Campos-Delgado, J. E. Hernández-Díez, D. R. Espinoza-Trejo, and G. Bossio, “Fault diagnosis scheme for open-circuit faults in field-oriented control induction motor drives,” IET Power Electron., vol. 6, no. 5, pp. 869–877, 2013.
[49] I. Jlassi, J. O. Estima, S. Khojet El Khil, N. Mrabet Bellaaj, and A. J. Marques Cardoso, “Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2689–2702, 2015.
[50] D. U. Campos-Delgado and D. R. Espinoza-Trejo, “An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 671–679, 2011.
107
[51] B. Gou, X. Ge, S. Wang, X. Feng, J. B. Kuo, and T. G. Habetler, “An open-switch fault diagnosis method for single-phase PWM rectifier using a model-based approach in high-speed railway electrical traction drive system,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3816–3826, 2016.
[52] A. J. Marques Cardoso, J. O. Estima, S. Khojet El Khil, N. Mrabet-Bellaaj, and I. Jlassi, “Current sensor fault detection and isolation method for PMSM drives, using average normalised currents,” Electron. Lett., vol. 52, no. 17, pp. 1434–1436, 2016.

無法下載圖示 全文公開日期 2024/01/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE