簡易檢索 / 詳目顯示

研究生: 曾俊富
Chun-Fu Tseng
論文名稱: 以噴霧乾燥法製備非晶生物活性玻璃及其製程最佳化
Preparation of amorphous bioactive glasses by spray drying method with optimization of its quenching process
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 生物活性玻璃噴霧乾燥法非晶結構
外文關鍵詞: Bioactive glasses, Spray drying, Amorphous structure, Strontium
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著年紀的增加,蝕骨細胞的生成速率會大於成骨細胞的生成速率,這會導致骨質密度降低,造成骨頭內部產生孔洞甚至形成中空的狀態。這會使得骨骼強度變弱、變脆,很容易形成骨質疏鬆,進而導致骨頭在接觸外力時,容易造成斷裂。
當遭遇骨頭斷裂的情況時,骨修復更是一大難題,本次研究採用的生物活性玻璃具有良好的生物活性及生物相容性,其表面可以與骨骼產生鍵結,能夠讓細胞貼附,加快骨質的修復速度。此外,生物活性玻璃已廣泛地被應用於骨填充材,生物活性玻璃可藉由添加不同的元素,來增加不同的性質,例如:銀、鋅、鍶等,其中鍶與鈣具有相似的原子半徑和化學性質,同時也易於被骨頭吸收,鍶與骨骼中的氫氧基磷灰石有良好的結合能力,具有抑制蝕骨細胞的作用,並且可以促使成骨細胞分化骨細胞促進骨骼的生成,達到增加骨質密度、提高骨骼強度的功用。
本次實驗使用噴霧乾燥法製備生物活性玻璃,有別於一般常見的溶膠-凝膠法,能縮短時間且大量生產,然而此製程須藉由二次鍛燒以去除前驅物官能基,容易造成結晶結構的生成,導致生物活性的下降,因此本研究擬控制鍛燒熱處理的方式製備非晶結構的生物活性玻璃,並利用熱重損失分析儀(Thermogravimetric)、X光繞射儀(X-ray diffractometer)、掃描式電子顯微鏡(Scanning electron microscope)及傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer),來分析其最佳鍛燒溫度、相組成、粉末形貌及化學結構,最後,本實驗成功地利用熱處理600°C鍛燒持溫60 分鐘製備出含鍶的非晶生物活性玻璃並具有最佳的參數及其性質。
關鍵詞:生物活性玻璃、噴霧乾燥法、非晶結構、鍶


Abstract
With the increase of age, the rate of formation of osteoclasts will be greater than the rate of formation of osteoblasts, which will lead to a decrease in bone density, resulting in holes or even hollows in the bones. This will make the bones weaker and brittle, and it is easy to form osteoporosis, which will cause the bones to easily break when they come into contact with external forces.
When encountering bone fractures, bone repair is even more difficult. The bioactive glass used in this study has good bioactivity and biocompatibility. Its surface can bond with bones and allow cells to attach. Speed up the repair of bone. In addition, bioactive glass has been widely used in bone filling materials. Bioactive glass can be added with different elements to increase different properties, such as: silver, zinc, strontium, etc., among which strontium and calcium have similar atomic radii It has good chemical properties and is easily absorbed by bones. Strontium has a good binding ability with hydroxyapatite in bones. It has the effect of inhibiting osteoblasts, and it can promote osteoblasts to differentiate bone cells to promote bone formation. Achieve the function of increasing bone density and improving bone strength.
In this study, Bioactive glass was prepared by spray drying (SD), which provides short synthetic time and allows mass production as compared to the sol-gel process. However, the SD process generally requires secondary calcination to remove the precursors’ functional groups, which tends to the formation of crystalline phases and leads to decrease of bioactivity. Therefore, this research aims to prepare BG specimens with amorphous structure by controlling the heat treatment of the calcination progress. Characterizations of thermogravimetric analysis, X-ray diffractometer, Scanning electron microscope, Nitrogen absorption/desorption isotherm, Fourier transform infrared spectrometer were used to analysis the optimal calcination temperature, phase composition, surface morphology of the specimens, specific surface area and chemical structure of the materials At last, BG with amorphous structure doped strontium was successfully prepared by calcining at a temperature of 600°C for 60 minutes.
Keywords: Bioactive glasses, Spray drying, Amorphous structure, Strontium

目錄 摘要 ............................................................................................................................................. I Abstract ....................................................................................................................................... II 致謝 ........................................................................................................................................... III 目錄 .......................................................................................................................................... IV 圖目錄 ..................................................................................................................................... VII 表目錄 ........................................................................................................................................ X 一、緒論 ..................................................................................................................................... 1 1.1研究背景 .................................................................................................................................................... 1 1.2研究動機 .................................................................................................................................................... 2 二、文獻回顧 ............................................................................................................................. 3 2.1骨骼 ............................................................................................................................................................ 3 2.1.1 骨骼的成分 ........................................................................................................................................ 3 2.1.2 骨頭的構造 ........................................................................................................................................ 4 2.1.3 骨折 .................................................................................................................................................... 5 2.2 生醫材料 .................................................................................................................................................... 6 2.2.1 生醫金屬 ............................................................................................................................................ 7 2.2.2 生醫高分子 ........................................................................................................................................ 7 2.2.3 生醫陶瓷 ............................................................................................................................................ 8 2.3 生物活性玻璃 ............................................................................................................................................ 9 2.3.1 生物活性玻璃的特性 ........................................................................................................................ 9 2.3.2 生物活性玻璃的機制 ...................................................................................................................... 10 2.3.3 生物活性玻璃的分析 ...................................................................................................................... 12 v 2.4 鍶 .............................................................................................................................................................. 14 2.4.1 鍶的吸收性 ...................................................................................................................................... 14 2.4.2 鍶的組織分布 .................................................................................................................................. 14 2.4.3 鍶對骨直接作用 .............................................................................................................................. 15 2.5 生物活性玻璃的合成方式 ...................................................................................................................... 16 2.5.1 傳統玻璃法 (Conventional glass method) ....................................................................................... 16 2.5.2 溶膠凝膠法(Sol-gel method) ........................................................................................................... 17 2.5.3 噴霧熱裂解法 (Spray pyrolysis) ...................................................................................................... 18 2.5.4 噴霧乾燥法 (Spray drying) .............................................................................................................. 19 2.6 噴霧乾燥法的介紹 .................................................................................................................................. 20 2.6.1 噴霧乾燥法粉體的形貌之影響分子 ............................................................................................... 21 2.6.2 噴霧乾燥法製成參數的影響........................................................................................................... 21 2.6.3 旋風集塵技術 .................................................................................................................................. 23 三、實驗方法 ........................................................................................................................... 24 3.1實驗設計 .................................................................................................................................................. 24 3.2實驗藥品 .................................................................................................................................................. 26 3.3實驗儀器 .................................................................................................................................................. 27 3.4樣品製備 .................................................................................................................................................. 28 3.4.1 生物活性玻璃粉體的製備............................................................................................................... 28 3.5樣品性質及分析方法 .............................................................................................................................. 29 3.5.1 熱重損失分析儀 .............................................................................................................................. 29 3.5.2 X光繞射儀 ....................................................................................................................................... 29 3.5.4 傅立葉轉換紅外線光譜儀............................................................................................................... 31 3.5.5 體外生物活性試驗 .......................................................................................................................... 32 3.5.6 細胞毒性試驗 .................................................................................................................................. 33 四、實驗結果 ........................................................................................................................... 34 vi 4.1 前驅液溶液 .............................................................................................................................................. 34 4.1.1 控制酒精/水的比例 ......................................................................................................................... 34 4.2 熱重損失分析 .......................................................................................................................................... 35 4.2.1 熱重損失分析儀 .............................................................................................................................. 35 4.3 相結構分析 .............................................................................................................................................. 37 4.3.1 X光繞射分析儀 ............................................................................................................................... 37 4.4 表面及粒徑分布分析 .............................................................................................................................. 38 4.4.1 微結構表面 ...................................................................................................................................... 38 4.4.2 微結構粒徑分布 .............................................................................................................................. 41 4.5 生物活性試驗 .......................................................................................................................................... 45 4.5.1 X光繞射分析儀 ............................................................................................................................... 45 4.5.1 傅立葉轉換紅外線光譜儀............................................................................................................... 46 4.6 體外生物相容性試驗 .............................................................................................................................. 48 4.6.1 細胞存活率測試 .............................................................................................................................. 48 五、結果討論 ........................................................................................................................... 50 5.1 控制酒精/水的比例對於生物活性玻璃的非晶結構之影響 ................................................................. 50 5.2 摻雜不同濃度鍶對於生物活性玻璃的體外生物活性之影響 ............................................................... 51 5.3 比較不同鍛燒溫度對於生物活性玻璃的細胞存活率之影響 ............................................................... 52 六、結論 ................................................................................................................................... 54 七、未來展望 ........................................................................................................................... 55 參考文獻 ................................................................................................................................... 56

參考文獻
[1] Tangcharoensathien, V., Faramnuayphol, P., Teokul, W., Bundhamcharoen, K., & Wibulpholprasert, S. (2006). A critical assessment of mortality statistics in Thailand: potential for improvements. Bulletin of the World Health Organization, 84, 233-238.
Department of Statistics, Taiwan, 2020.
[2] A. Saatchi, et al., Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications, Ceramics International, (2020).
[3] M.M.J.S.m.j. Iqbal, Osteoporosis: epidemiology, diagnosis, and treatment, Ceramics International Ceramics International 93 (2000) 2-18.
[4] M. Kruger, et al., Bone mineral density in people living with HIV: a narrative review of the literature, AIDS research and therapy 14 (2017) 1-17.
[5] B. Markings, The skeletal system, (1995).
[6] P. Ammann, et al., Bone strength and its determinants, Osteoporosis international 14 (2003) 13-18.
[7] S. Weiner, et al., Bone structure: from ångstroms to microns, The FASEB journal 6 (1992) 879-885.
[8] S. Nuzzo, et al., Microarchitectural and physical changes during fetal growth in human vertebral bone, Journal of bone and mineral research 18 (2003) 760-768.
[9] B.L. Riggs, et al., Involutional osteoporosis, New England journal of medicine 314 (1986) 1676-1686.
[10] R. Florencio-Silva, et al., Biology of bone tissue: structure, function, and factors that influence bone cells, BioMed research international 2015 (2015).
[11] A.J.A.J.M. Consensus, Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis, Am J Med 94 (1993) 646-650.
[12] G.E. Fantner, et al., Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture, Nature materials 4 (2005) 612-616.
[13] C. Berbecaru, et al., The bioactivity mechanism of magnetron sputtered bioglass thin films, Applied Surface Science, 258 (2012) 9840-9848.
57
[14] F. Bonnarens, et al., Production of a standard closed fracture in laboratory animal bone, Journal of orthopaedic research 2 (1984) 97-101.
[15] R.B. Gustilo, et al., The management of open fractures, JBJS 72 (1990) 299-304.
[16] C. Papakostidis, et al., Prevalence of complications of open tibial shaft fractures stratified as per the Gustilo–Anderson classification, Injury 42 (2011) 1408-1415.
[17] R.B. Gustilo, et al., Problems in the management of type III (severe) open fractures: a new classification of type III open fractures, The Journal of trauma 24 (1984) 742-746.
[18] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surface and Coatings Technology, 127 (2000) 203-218.
[19] R. Narayan, Biomedical materials, Springer Science & Business Media Biomedical materials. Springer, Boston, MA,2009 477-491.
[20] D.F.J.B. Williams, On the mechanisms of biocompatibility, Biomaterials 29 (2008) 2941-2953.
[21] T. Kokubo, et al., Novel bioactive materials with different mechanical properties, Springer Science & Business Media 24 (2003) 2161-2175.
[22] A. Francis, et al., Iron and iron-based alloys for temporary cardiovascular applications, Journal of Materials Science: Materials in Medicine 26 (2015) 138.
[23] N.J. Hallab, et al., Interfacial kinetics of titanium‐and cobalt‐based implant alloys in human serum: The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials Metal release and biofilm formation, 65 (2003) 311-318.
[24] M. Wadamoto, et al., The three-dimensional bone interface of an osseointegrated implant. I: A morphometric evaluation in initial healing, The Journal of prosthetic dentistry 76 (1996) 170-175.
[25] P.A. Gunatillake, et al., Biodegradable synthetic polymers for tissue engineering, 5 Biodegradable synthetic polymers for tissue engineering (2003) 1-16.
[26] S. Hulbert, et al., History of bioceramics, Ceramics international 8 (1982) 131-140.
58
[27] G.P. Jayaswal, et al., Bioceramic in dental implants: A review, The Journal of Indian Prosthodontic Society 10 (2010) 8-12.
[28] M. Manzano, et al., Revisiting bioceramics: bone regenerative and local drug delivery systems, Progress in Solid State Chemistry 40 (2012) 17-30.
[29] A.B. Jedlicka, et al., Chemical durability of commercial silicate glasses. I. Material characterization, Journal of non-crystalline solids 281 (2001) 6-24.
[30] M. O’donnell, et al., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, Journal of Materials Chemistry 20 (2010) 8934-8941.
[31] S. Lopez-Esteban, et al., Bioactive glass coatings for orthopedic metallic implants, Journal of the European Ceramic Society 23 (2003) 2921-2930.
[32] C.-C. Lin, et al., Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: Elasticity and structure, Journal of Non-Crystalline Solids 351 (2005) 3195-3203.
[33] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, Journal of the american ceramic society 74 (1991) 1487-1510.
[34] A. Clark Jr, et al., Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society 59 (1976) 37-39.
[35] D. Sanders, et al., Mechanisms of glass corrosion, Journal of the American Ceramic Society 56 (1973) 373-377.
[36] R. Wetzel, et al., Apatite formation of substituted Bioglass 45S5: SBF vs. Tris, Materials Letters 257 (2019) 126760.
[37] J. Chen, et al., Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro, Bioactive materials 3 (2018) 315-321.
[38] R. Li, et al., An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials 2 (1991) 231-239.
[39] W.E. Cabrera, et al., Strontium and bone, Journal of Bone and Mineral Research 14 (1999) 661-668.
[40] E. Underwood, Trace elements in human and animal nutrition, Elsevier2012.
59
[41] I. Likhtarev, et al., A study of certain characteristics of strontium metabolism in a homogeneous group of human subjects, Health physics 28 (1975) 49-60.
[42] P. Dumont, et al., Calcium and strontium in rat small intestine their fluxes and their effect on Na flux, The Journal of general physiology 43 (1960) 1119-1136.
[43] U. Karbach, et al., Strontium transport in the rat colon, Naunyn-Schmiedeberg's archives of pharmacology 335 (1987) 91-96.
[44] D. Papworth, et al., The kinetics of influx of calcium and strontium into rat intestine in vitro, The Journal of physiology 210 (1970) 999-1020.
[45] K. Kostial, et al., Effects of dietary levels of phosphorus and calcium on the comparative behaviour of strontium and calcium, Nature 208 (1965) 1110-1111.
[46] H. Seiler, et al., Handbook on metals in clinical and analytical chemistry, CRC Press1994.
[47] S.C.J.T.S.E.H. Skoryna, Metabolic aspects of the pharmacologic use of trace elements in human subjects with specific reference to stable strontium, Trace Subst Environ Health 18 (1984) 23.
[48] G. Boivin, et al., Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt Journal of Bone and Mineral Research (S 12911) administration, 11 (1996) 1302-1311.
[49] I. Schrooten, et al., Strontium causes osteomalacia in chronic renal failure rats, Kidney international 54 (1998) 448-456.
[50] J. Omdahl, et al., Strontium induced rickets: metabolic basis, Science 174 (1971) 949-951.
[51] P. Marie, et al., Effect of stable strontium on bone metabolism in rats, Metals in Bone, Springer Dordrecht 1985, pp. 117-125.
[52] A.J.T.J.J.o.P. Matsumoto, Effect of strontium on the epiphyseal cartilage plate of rat tibiae—histological and radiographic studies, The Japanese Journal of Pharmacology 26 (1976) 675-681.
[53] A.R.J.C.t.r. Johnson, The influence of strontium on characteristic factors of bone, Calcified tissue research 11 (1973) 215-221.
[54] E.J.B.m. Eisenberg, The biological metabolism of strontium, (1973) 435-442.
60
[55] J. Christoffersen, et al., Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection, Bone 20 (1997) 47-54.
[56] M. Grynpas, et al., Effects of low doses of strontium on bone quality and quantity in rats, Bone 11 (1990) 313-319.
[57] L.L. Hench, The story of Bioglass (R), J. Mater. Sci.-Mater. Med., Journal of Materials Science: Materials in Medicine 17 (2006) 967-978.
[58] M. Vallet-Regí, et al., Ceramics as bone repair materials, Bone repair biomaterials, Elsevier Regeneration and clinical applications 2019, pp. 141-178.
[59] J. Liu, et al., Sol–gel derived bioglass as a coating material for porous alumina scaffolds, Ceramics international 30 (2004) 1781-1785.
[60] F.B.A. Ahad, et al., Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles, Journal of Applied Physics 107 (2010) 09D904.
[61] S.-J. Shih, et al., Controlled morphological structure of ceria nanoparticles prepared by spray pyrolysis, Procedia Engineering 36 (2012) 186-194.
[62] S.-J. Shih, et al., Nanoscale yttrium distribution in yttrium-doped ceria powder, Journal of Nanoparticle Research 11 (2009) 2145-2152.
[63] L.L. Hench, et al., Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
[64] A. Marotta, et al., Crystallization kinetics of gehlenite glass, J. Mater. Sci.-Mater. Med., Journal of Materials Science 13 (1978) 2483-2486.
[65] H.-I. Hsiang, et al., Crystallization, densification and dielectric properties of CaO–MgO–Al2O3–SiO2 glass with ZrO2 as nucleating agent, Materials Research Bulletin 60 (2014) 730-737.
[66] H.-I. Hsiang, et al., Effects of the addition of alumina on the crystallization, densification and dielectric properties of CaO–MgO–Al2O3–SiO2 glass in the presence of ZrO2, Ceramics International, 40 (2014) 15807-15813.
[67] M. Sales, et al., Crystallization of sol-gel derived glass ceramic powders in the CaO-MgO-Al 2 O 3-SiO 2 system, Journal of Materials Science-Materials in Medicine, 30 (1995) 2341-2347.
[68] M. Doval, et al., Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol–gel method, Journal of thermal analysis
61
86 (2006) 595-599.
[69] S.-J. Shih, et al., One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research 14 (2012) 1299.
[70] L.L. Hench, et al., The sol-gel process, Chemical reviews, 90 (1990) 33-72.
[71] K.J.S.d.h. Masters, Spray drying handbook, pray drying handbook (1985).
[72] R.J.P.r. Vehring, Pharmaceutical particle engineering via spray drying, Pharmaceutical research 25 (2008) 999-1022.
[73] E. Lintingre, et al., Control of particle morphology in the spray drying of colloidal suspensions, Soft Matter 12 (2016) 7435-7444.
[74] H. Liang, et al., Analysis of constant rate period of spray drying of slurry, Chemical Engineering Science 56 (2001) 2205-2213.
[75] S. Abd Hashib, et al., Effect of slurry concentration and inlet temperature towards glass temperature of spray dried pineapple powder, Procedia-Social and Behavioral Sciences 195 (2015) 2660-2667.
[76] H.M. Yang, et al., Experimental study on the spray characteristics in the spray drying absorber, Environmental science & technology 34 (2000) 4582-4586.
[77] J.W. Ivey, et al., Experimental investigations of particle formation from propellant and solvent droplets using a monodisperse spray dryer, Aerosol Science and Technology 52 (2018) 702-716.
[78] R. Vehring, et al., Particle formation in spray drying, Journal of Aerosol Science 38 (2007) 728-746.
[79] D. Santos, et al., Spray Drying: An Overview, InTech (2017).
[80] Understanding Cyclone Dust Collectors, Industrial & Engineering Chemistry 2020.
[81] K. Zheng, et al., Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles, RSC advances 6 (2016) 95101-95111.
[82] J.J.C. Cihlář, et al., Hydrolysis and polycondensation of ethyl silicates. 1. Effect of pH and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (TEOS), Physicochemical and Engineering Aspects 70 (1993) 239-251.
62
[83] Z. Li, et al., Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite, Biomaterials 28 (2007) 1452-1460.
[84] Y.C. Fredholm, et al., Strontium containing bioactive glasses: glass structure and physical properties, Journal of Non-Crystalline Solids 356 (2010) 2546-2551.
[85] M. O’donnell, et al., Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration, Acta biomaterialia 6 (2010) 2382-2385.
[86] K.J. Burg, et al., Biomaterial developments for bone tissue engineering, Biomaterials 21 (2000) 2347-2359.
[87] S. Hesaraki, et al., The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system, Materials Science and Engineering 30 (2010) 383-390.
[88] D. Heslop, et al., A comparative study of the metastable equilibrium solubility behavior of high-crystallinity and low-crystallinity carbonated apatites using pH and solution strontium as independent variables, Journal of colloid and interface science 289 (2005) 14-25.

無法下載圖示 全文公開日期 2024/07/22 (校內網路)
全文公開日期 2024/07/22 (校外網路)
全文公開日期 2024/07/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE