簡易檢索 / 詳目顯示

研究生: 邱勳宗
Hsun-Tsung Chiu
論文名稱: 基於啟發式之太陽能系統線對線故障診斷法
A Heuristic Method for Line-to-line Fault Diagnosis of Solar Photovoltaic Systems
指導教授: 張宏展
Hong-Chan Chang
口試委員: 吳瑞南
Ruay-Nan Wu
郭政謙
Cheng-Chien Kuo
陳鴻誠
Hung-Cheng Chen
陳柏宏
Po-Hung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 太陽能系統線對線故障啟發法故障診斷
外文關鍵詞: Solar photovoltaic system, Line-to-line fault, Heuristics, Fault diagnosis
相關次數: 點閱:233下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能系統中的故障分析與診斷可保護光伏元件受到損壞,並避免可能使安全受到危害的潛在危機。太陽能系統故障可分為交流側故障及直流側故障,雖然已有許多保護太陽能系統相關的國際規範,但對於某些直流側的故障卻無法有效保護,且大部分故障分析仍集中在交流側,導致直流側故障診斷成為太陽能領域的困難點。其中線對線故障根據桑迪亞國家實驗室(Sandia National Laboratories, SNL)統計結果,儘管發生頻率不高,但其造成的危害卻更嚴重而且難以防範。
有鑑於此,本研究針對直流側的線對線故障提出基於啟發式之故障診斷法。此法分別使用電路模擬方式得到相對門檻值,與使用理論估算方式得到絕對門檻值,再結合兩種門檻值來判斷故障。電路模擬法透過MATLAB的Simulink軟體建置太陽能系統模型,以模擬方式取得各種環境條件及故障程度下,正常和故障狀態的陣列輸出電壓瞬時值,先進行有效值計算後,再以陣列開路電壓為基準值做標么化,隨後將兩者之間的變化程度當作判斷故障的相對門檻值,若測量的陣列輸出電壓標么與前一次測量值相減,兩者之間的變化程度大於相對門檻值則判斷為發生故障。理論估算法透過理論值計算方式,求得故障狀態之陣列輸出電壓標么當作絕對門檻值,若測量的陣列輸出電壓標么小於絕對門檻值則判斷為發生故障。經模擬驗證,相對門檻值在低失配故障發生時,依然能夠有效偵測故障,而絕對門檻則有待實務測量後,透過補償係數修正理論估算造成的誤差。


Fault analysis and diagnosis protects the components of photovoltaic (PV) systems from damages and mitigates risks to system safety. Faults in a PV system are divided into alternating current (AC)-side faults and direct current (DC)-side faults. Although many international standards have been proposed to protect PV systems, standards remain unable to effectively protect PV systems from DC-side faults. Moreover, most fault analyses have solely focused on AC-side faults, rendering DC-side faults a major problem in PV systems. In particular, line-to-line faults are very dangerous to PV systems and are difficult to prevent—although they occur relatively infrequently, according to statistics by Sandia National Laboratories.
This study incorporated a heuristic fault diagnosis approach for line-to-line faults. The approach use circuit simulation method to get the relative threshold values, and use theoretical estimation method to get the absolute threshold values. Finally, combine the two threshold values to detect faults. The circuit simulation method uses the Simulink program in MATLAB to establish a PV-system model; the model simulates the instantaneous values of the array output voltage under normal and faulty operation statuses and under various environmental conditions and fault severities. The effective values are calculated before being standardized using the array output voltage as the reference value. The difference between the values of the two statuses is then determined as the relative threshold value for fault occurrence. The difference between the standardized value and the value calculated in a preceding measurement is calculated; if this difference is larger than the relative threshold value, a fault has occurred. The theoretical estimation method involves obtaining the standard array output voltage during a faulty status through theoretical calculations; this voltage is then used as a absolute threshold value. If a measured standardized value is lower than the absolute threshold value, then a fault has occurred. After verified by simulation, the relative threshold values are effective to detect the fault, even when low mismatch fault occurs. However, the absolute threshold values must be corrected by using compensation coefficients in subsequent actual measurements.

中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與架構 3 1.3 章節概述 5 第二章 直流側故障分析之回顧 6 2.1 故障類型綜整 6 2.1.1 接地故障 6 2.1.2 開路故障 8 2.1.3 熱斑現象 8 2.1.4 電弧故障 9 2.2 故障診斷方法綜整 10 第三章 太陽光伏系統之模型建置 15 3.1 太陽光伏模組 16 3.2 最大功率追蹤器 19 3.2.1 升壓型直流轉換器 20 3.2.2 擾動觀察法 27 3.3 模型驗證 28 第四章 線對線故障分析與診斷 32 4.1 前言 32 4.2 模擬分析 33 4.2.1 案例一 33 4.2.2 案例二 37 4.2.3 案例三 39 4.2.4 結果分析 41 4.3 啟發式故障診斷法 42 4.3.1 利用電路模擬方法得到相對門檻 43 4.3.2 利用理論估算方法得到絕對門檻 48 4.3.3 結合相對門檻值與絕對門檻判斷故障 54 4.4 診斷法驗證與問題討論 55 4.4.1 最低失配門檻值對啟發式故障診斷的影響 55 4.4.2 量測時間間隔對啟發式故障診斷的影響 59 第五章 結論及未來展望 61 5.1 結論 61 5.2 未來研究方向 62 參考文獻 63

[1] IEC 61140, “Protection against electric shock- Common aspects for installation and equipment,” 2016.
[2] Geoffrey T. KliseSandia, Olga Lavrova, and Renee Gooding, “PV System Component Fault and Failure Compilation and Analysis,” Sandia Laboratories Report, Sand No. 2018-1743, February 2018.
[3] Mohammed Khorshed Alam, Faisal Khan, Jay Johnson, and Jack Flicker, “A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques,” IEEE Journal of Photovoltaics, Vol. 5, No. 3, pp. 982-997, May 2015.
[4] 用戶用電設備裝置規則,全國法規資料庫,2020年4月。
Available: http://law.moj.gov.tw/
[5] National Electrical Code, Article 690, “Solar Photovoltaic System,” 2014.
[6] Katherine A. Kim, Gab-Su Seo, Bo-Hyung Cho, and Philip T. Krein, “Photovoltaic hot-spot detection for solar panel substrings using AC parameter characterization,” IEEE Transactions on Power Electronics, Vol. 31, No. 2, pp. 1121-1130, February 2016.
[7] Giuseppe Marco Tina, Fabio Cosentino, and Cristina Ventura, “Monitoring and Diagnostics of Photovoltaic Power Plants,” Renewable Energy in the Service of Mankind, Vol 2, pp. 505-516, December 2015.
[8] Francesco Grimaccia, Sonia Leva, Alberto Dolara, and Mohammadreza Aghaei, “Survey on PV Modules’ Common Faults After an O&M Flight Extensive Campaign Over Different Plants in Italy,” IEEE Journal of Photovoltaics, Vol. 7, No. 3, pp. 810-816, May 2017.
[9] Andreas Livera, Marios Theristis, George Makrides, and George E. Georghiou, “Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems,” Renewable energy, Vol. 133, pp. 126-143, 2019.
[10] Takumi Takashima, Junji Yamaguchi, Kenji Otani, Kazuhiko Kato, and Masayoshi Ishida, “Experimental Studies of Failure Detection Methods in PV Module Strings,” IEEE 4th World Conference on Photovoltaic Energy Conference, Vol. 2, 2006.
[11] Mohammed Khorshed Alam, Faisal Khan, Jay Johnson, and Jack Flicker, “PV ground-fault detection using spread spectrum time domain reflectometry (SSTDR),” 2013 IEEE energy conversion congress and exposition Conference, Denver, CO, USA, 2013, pp. 1015-1020.
[12] Takumi Takashima, Junji Yamaguchi, and Masayoshi Ishida, “Disconnection detection using earth capacitance measurement in photovoltaic module string,” Progress in Photovoltaics: Research and Applications, Vol. 16, No. 8, pp. 669-677, September 2008.
[13] Elyes Garoudja, Fouzi Harrou, Ying Sun, Kamel Kara, and Aissa Chouder, “Statistical fault detection in photovoltaic systems,” Solar Energy, Vol. 150, pp. 485-499, July 2017.
[14] Fouzi Harrou, Ying Sun, Bilal Taghezouit, Ahmed Saidi, and Mohamed-Elkarim Hamlati, “Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches,” Renewable energy, Vol. 116, Part. A, pp. 22-37, February 2018.
[15] D. Stellbogen, “Use of PV circuit simulation for fault detection in PV array fields,” Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference, Vol. 93, May 1993.
[16] W. Chine, A. Mellit, A. Massi Pavan, and V. Lughi, “Fault diagnosis in photovoltaic arrays,” International Conference on Clean Electrical Power, June 2015. 
[17] Byung-Kwan Kang, Seung-Tak Kim, Sun-Ho Bae, and Jung-Wook Park, “Diagnosis of output power lowering in a PV array by using the Kalman-filter algorithm,” IEEE Transactions on Energy Conversion, Vol. 27, No. 4, pp. 885-894, December 2012.
[18] Y. Stauffer, D. Ferrario, E. Onillon, and A. Hutter, “Power monitoring based photovoltaic installation fault detection,” 2015 4th International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, Nov. 2015, pp. 119-202.
[19] Mahmoud Dhimish, and Violeta Holmes, “Fault detection algorithm for grid-connected photovoltaic plants,” Solar Energy, Vol. 137, pp. 236-245, November 2016.
[20] Zhicong Chen, Fuchang Han, Lijun Wu, Jinling Yu, Shuying Cheng, Peijie Lin, and Huihuang Chen, “Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents,” Energy conversion and management, Vol. 178, pp. 250-264, December 2018.
[21] Zhehan Yi, and Amir H. Etemadi, “Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 11, pp. 8546-8556, November 2017.
[22] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric condition,” IEE Proceedings-Generation, Transmission and Distribution, Vol, 142, No. 1, pp. 59-64, January 1995.
[23] Muralidhar Killi, and Susovon Samanta, “Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems,” IEEE transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5549-5559, September 2015.
[24] IEC 61724-1, “Photovoltaic system performance- Part 1: Monitoring,” 2017. 
[25] Santiago Silvestre, Mario Aires da Silva, Aissa Chouder, Daniel Guasch, and Engin Karatepe, “New procedure for fault detection in grid connected PV systems based on the evaluation of current and voltage indicators,” Energy Conversion and Management, Vol. 86, pp. 241-249, May 2014.
[26] Imene Yahyaoui, and Marcelo E.V. Segatto, “A practical technique for on-line monitoring of a photovoltaic plant connected to a single-phase grid,” Energy Conversion and Management, Vol. 132, pp. 198-206, November 2017.
[27] Tingting Pei, and Xiaohong Hao, “A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation,” Energies, Vol. 12, No. 9, pp. 1-16, May 2019.

QR CODE