簡易檢索 / 詳目顯示

研究生: 陳彥維
Yan-Wei Chan
論文名稱: 以開環聚合法合成聚(ε-己內酯-L-乳酸-甘醇酸)三嵌段共聚物及其結構與性質鑑定
Synthesis and Characterization of Poly(ε-caprolactone-co-L-lactide-co-glycolide) Triblock Copolymers by Ring-Opening Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 75
中文關鍵詞: 生物可降解高分子己內酯左旋聚乳酸乙醇酸開環聚合法嵌段共聚物
外文關鍵詞: biodegradable polymers, ε-caprolactone, L-lactide, glycolide, ring-opening polymerization, block copolymers
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目標是探討具有己內酯、左旋乳酸和乙醇酸的生物可降解高分子的合成與鑑定,以開環聚合法作為高分子聚合反應,合成出一系列具有不同組成比例的嵌段或無規共聚物。精確的組成比例和鏈段排列,可以藉由核磁共振氫譜和碳譜中得知。相較於無規共聚物,嵌段共聚物展現出了兩階段的熱降解性質。高度有序的排列,使嵌段共聚物展現出了高結晶度的特性。以不同的方式去鑄造了高分子膜,其中,以熔融鑄造法所得的高分子膜最為平滑,旋轉塗佈法和溶液鑄膜法則相對粗糙。在接觸角實驗中,嵌段共聚物相對於無規共聚物展現出了較高的疏水性。


    The aim of this thesis is to synthesize and characterize biodegradable polymers containing ε-caprolactone, L-lactide and glycolide. The polymers were synthesized through ring-opening polymerization, yielding a series of block or random copolymers with varying composition ratios. The precise composition and chain arrangement were determined through hydrogen and carbon nuclear magnetic resonance spectroscopy. Compared to random copolymers, block copolymers exhibit a two-stage thermal degradation behavior. Due to the highly ordered arrangement, block copolymers exhibited high crystallinity. Polymer films were casted using different methods with the melt-casting method producing the smoothest films, while spin-coating and solution-casting methods resulted in relatively rough surfaces. In contact angle experiments, block copolymers demonstrated higher hydrophobicity compared to random copolymers.

    Abstract I 中文摘要 II 致謝 III Table of Content IV List of Figures VII List of Tables IX List of Schemes X Chapter 1. Introduction and Aims 1 1.1 Introduction 2 1.1.1 Biodegradable polymer 2 1.1.2 Poly(lactide) 5 1.1.3 Poly(glycolide) 12 1.1.4 Poly(lactide-co-glycolide) 15 1.1.5 Poly(ε-caprolactone) 17 1.1.6 Copolymers 18 1.2 Aim of project 21 Chapter 2. Result and discussion 22 2.1 Synthetic route 23 2.2 Composition ratio and structure analysis of polymers 26 2.2.1 1H NMR spectrum of PCL2 26 2.2.2 1H NMR spectrum of PCLA2 27 2.2.3 1H NMR spectra of PCLG1-3 28 2.2.4 1H NMR spectrum of PCLG2-r 30 2.2.5 13C NMR spectra of PCLG2 and PCLG2-r 34 2.3 FT-IR spectra of PCL2, PLA2 and PCLG1-3 36 2.4 Thermal properties of PCL2, PLA2, PCLG1-3 and PCLG2-r 37 2.5 Morphologies of PCL2, PLA2, PCLG1-3 and PCLG2-r 42 2.6 Contact angle of PCL2, PLA2, PCLG1-3 and PCLG2-r 46 Chapter 3. Conclusion 51 Chapter 4. Experimental Section 52 4.1 Materials, instrumentation and characterization 53 4.2 Synthesis of polymers 54 4.2.1 Synthesis of homopolymer, poly(caprolactone)(PCL-1) 54 4.2.2 Synthesis of homopolymer, poly(caprolactone)(PCL-2) 54 4.2.3 Synthesis of homopolymer, poly(caprolactone) (PCL-3) 55 4.2.4 Synthesis of poly(caprolactone-b-L-lactide) (PCLA-1) 56 4.2.5 Synthesis of poly(caprolactone-b-L-lactide) (PCLA-2) 56 4.2.6 Synthesis of poly(caprolactone-b-L-lactide) (PCLA-3) 57 4.2.7 Synthesis of poly(caprolactone-b-L-lactide-b-glycolide) (PCLG-1) 58 4.2.8 Synthesis of poly(caprolactone-b-L-lactide-b-glycolide) (PCLG-2) 59 4.2.9 Synthesis of poly(caprolactone-b-L-lactide-b-glycolide) (PCLG-3) 60 4.2.10 Synthesis of random copolymer, poly(caprolactone-L-lactide-glycolide) (PCLG2-r) 60 References 62 Appendix 66 AI. NMR spectra 66 AII. GPC spectra 73

    [1] A. Cabanes, F. J. Valdés, A. Fullana, SM&T 2020, 25, e100179
    [2] M. C. Heller, M. H. Mazor, G. A. Keoleian, Environ. Res. Lett. 2020, 15, 094034.
    [3] K. J. Jem, B. Tan, Adv. Ind. Eng. Polym. Res. 2020, 3, 60-70.
    [4] N.-A. A. B. Taib, M. R. Rahman, D. Huda, K. K. Kuok, S. Hamdan, M. K. B. Bakri, M. R. M. B. Julaihi, A. Khan, Polym. Bull. 2022, 80, 1179-1213.
    [5] D. S. Katti, S. Lakshmi, R. Langer, C. T. Laurencin, Adv. Drug Deliv. Rev. 2002, 54, 933-961.
    [6] L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762-798.
    [7] P. Bordes, E. Pollet, L. Averous, Prog. Polym. Sci. 2009, 34, 125-155.
    [8] M. A. Elsawy, K.-H. Kim, J.-W. Park, A. Deep, Renew. Sust. Energ. Rev. 2017, 79, 1346-1352.
    [9] D. H. Vu, D. Akesson, M. J. Taherzadeh, J. A. Ferreira, Bioresour. Technol. 2020, 298, 122393.
    [10] J.-W. Rhim, H.-M. Park, C.-S. Ha, Prog. Polym. Sci. 2013, 38, 1629-1652.
    [11] L. T. Sin, A. R. Rahmat, W. A. W. A. Rahman, "Overview of Poly(lactic Acid)", in Polylactic Acid, 2013, p. 1-70.
    [12] S. Inkinen, M. Hakkarainen, A. C. Albertsson, A. Sodergard, Biomacromolecules 2011, 12, 523-532.
    [13] T. Casalini, F. Rossi, A. Castrovinci, G. Perale, Front. Bioeng. Biotechnol. 2019, 7, 259.
    [14] B. L. C. Cunha, J. O. Bahu, L. F. Xavier, S. Crivellin, S. D. A. de Souza, L. Lodi, A. L. Jardini, R. M. Filho, M. Schiavon, V. O. C. Concha, P. Severino, E. B. Souto, Bioengineering 2022, 9, 164.
    [15] K. Hiltunen, J. V. Seppälä, M. Härkönen, Macromolecules 1997, 30, 373-379.
    [16] A. V. Yarkova, V. T. Novikov, V. N. Glotova, A. A. Shkarin, Y. S. Borovikova, Procedia Chem. 2015, 15, 301-307.
    [17] D. K. Yoo, D. Kim, D. S. Lee, Macromol. Res. 2006, 14, 510-516.
    [18] R. Auras, B. Harte, S. Selke, Macromol Biosci 2004, 4, 835-864.
    [19] E. Balla, V. Daniilidis, G. Karlioti, T. Kalamas, M. Stefanidou, N. D. Bikiaris, A. Vlachopoulos, I. Koumentakou, D. N. Bikiaris, Polymers 2021, 13, 1822.
    [20] G. Li, M. Zhao, F. Xu, B. Yang, X. Li, X. Meng, L. Teng, F. Sun, Y. Li, Molecules 2020, 25, 5023.
    [21] H. R. Kricheldorf, S. M. Weidner, Polym. Chem. 2022,13, 1618-1647.
    [22] K. Budak, O. Sogut, U. Aydemir Sezer, J. Polym. Res. 2020, 27, 208.
    [23] S. Kehoe, X. F. Zhang, D. Boyd, Injury 2012, 43, 553-572.
    [24] B. D. Ulery, L. S. Nair, C. T. Laurencin, J. Polym. Sci. B Polym. Phys. 2011, 49, 832-864.
    [25] M. Y. Kariduraganavar, A. A. Kittur, R. R. Kamble, "Polymer Synthesis and Processing", in Natural and Synthetic Biomedical Polymers, 2014, p. 1-31.
    [26] K. Shen, S. L. Yang, Adv. Mat. Res. 2013, 821-822, 1023-1026.
    [27] H. O. Alsaab, F. D. Alharbi, A. S. Alhibs, N. B. Alanazi, B. Y. Alshehri, M. A. Saleh, F. S. Alshehri, M. A. Algarni, T. Almugaiteeb, M. N. Uddin, R. M. Alzhrani, Pharmaceutics 2022, 14, 2728.
    [28] H. K. Makadia, S. J. Siegel, Polymers 2011, 3, 1377-1397.
    [29] D. N. Kapoor, A. Bhatia, R. Kaur, R. Sharma, G. Kaur, S. Dhawan, Ther. Deliv. 2015, 6, 41-58.
    [30] M. A. Woodruff, D. W. Hutmacher, Prog. Polym. Sci. 2010, 35, 1217-1256.
    [31] B. Sowmya, A. B. Hemavathi, P. K. Panda, Prog. Biomater. 2021, 10, 91-117.
    [32] A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, P. A. Netti, Biomaterials 2008, 29, 4800-4807.
    [33] A. Cipitria, A. Skelton, T. R. Dargaville, P. D. Dalton, D. W. Hutmacher, J. Mater. Chem. 2011, 21, 9419-9453.
    [34] R. M. Aghdam, S. Shakhesi, S. Najarian, M. M. Mohammadi, S. H. Ahmadi Tafti, H. Mirzadeh, Int. J. Polym. Mater. 2013, 63, 229-239.
    [35] M. Adeli-Sardou, M. M. Yaghoobi, M. Torkzadeh-Mahani, M. Dodel, Int. J. Biol. Macromol. 2019, 124, 478-491.
    [36] Y. Zhong, P. Godwin, Y. Jin, H. Xiao, Adv. Ind. Eng. Polym. Res. 2020, 3, 27-35.
    [37] M. Thakur, I. Majid, S. Hussain, V. Nanda, Packag. Technol. Sci. 2021, 34, 449-461.
    [38] D. N. Bikiaris, G. Z. Papageorgiou, D. S. Achilias, E. Pavlidou, A. Stergiou, Eur. Polym. J. 2007, 43, 2491-2503.
    [39] I. Fortelny, A. Ujcic, L. Fambri, M. Slouf, Front. Mater. 2019, 6, 1-13.
    [40] Y. Ohya, A. Takahashi, K. Nagahama, "Biodegradable Polymeric Assemblies for Biomedical Materials", in Polymers in Nanomedicine, S. Kunugi and T. Yamaoka, Eds., 2012, p. 65-144.
    [41] S. Xiang, L. Feng, X. Bian, B. Zhang, B. Sun, Y. Liu, G. Li, X. Chen, Polym. Adv. Technol. 2019, 30, 963-972.
    [42] J. Coudane, H. Van Den Berghe, J. Mouton, X. Garric, B. Nottelet, Molecules 2022, 27, 7339.
    [43] J. He, W. Wang, H. Zhou, P. She, P. Zhang, Y. Cao, X. Zhang, J Drug Deliv Sci Technol. 2019, 53, 101130.
    [44] O. T. du Boullay, N. Saffon, J. P. Diehl, B. Martin-Vaca, D. Bourissou, Biomacromolecules 2010, 11, 1921-1929.
    [45] G. E. A. Verginio, T. L. d. A. Montanheiro, L. S. Montagna, J. Marini, F. R. Passador, J. Appl. Polym. Sci. 2020, 138, 50087.
    [46] M. E. González-López, J. R. Robledo-Ortíz, R. Manríquez-González, J. A. Silva-Guzmán, A. A. Pérez-Fonseca, Compos. Interfaces 2018, 25, 515-538.
    [47] N. N. B. Mohammad, A. Arsad, A. R. Rahmat, M. S. Talib, M. S. Z. Mat Desa, Appl. Mech. Mater. 2014, 554, 81-85.
    [48] L. Gardella, M. Calabrese, O. Monticelli, Colloid Polym. Sci. 2014, 292, 2391-2398.
    [49] L. Jiang, M. P. Wolcott, J. Zhang, Biomacromolecules 2006, 7, 199-207.
    [50] V. T. Lipik, L. K. Widjaja, S. S. Liow, M. J. M. Abadie, S. S. Venkatraman, Polym. Degrad. Stab. 2010, 95, 2596-2602.
    [51] R. D. Rittinghaus, J. Zenner, A. Pich, M. Kol, S. Herres-Pawlis, Compos. Interfaces 2022, 61, e202112853.
    [52] C. Zhang, Q. Lan, T. Zhai, S. Nie, J. Luo, W. Yan, Polymers 2018, 10, 1181.
    [53] Q. Lan, J. Yu, J. He, F. H. J. Maurer, J. Zhang, Macromolecules 2010, 43, 8602-8609.
    [54] H. Simmons, P. Tiwary, J. E. Colwell, M. Kontopoulou, Polym. Degrad. Stab. 2019, 166, 248-257.
    [55] P. Chen, K. Yu, Y. Wang, W. Wang, H. Zhou, H. Li, J. Mi, X. Wang, J. Polym. Environ. 2018, 26, 3718-3730.
    [56] M. Ayyoob, D. H. Lee, J. H. Kim, S. W. Nam, Y. J. Kim, Fibers Polym. 2017, 18, 407-415.
    [57] W. Y. Choi, C. M. Lee, H. J. Park, Food Sci. Technol. 2006, 39, 591-597.
    [58] L. Magazzini, S. Grilli, S. E. Fenni, A. Donetti, D. Cavallo, O. Monticelli, Polymers 2021, 13, 2780.
    [59] K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, S. H. Teoh, Biomaterials 2005, 26, 763-769.
    [60] Z. G. Tang, R. A. Black, J. M. Curran, J. A. Hunt, N. P. Rhodes, D. F. Williams, Biomaterials 2004, 25, 4741-4748.
    [61] E. I. Vargha-Butler, E. Kiss, C. N. C. Lam, Z. Keresztes, E. Kálmán, L. Zhang, A. W. Neumann, Colloid Polym. Sci. 2001, 279, 1160-1168.
    [62] S. Jain, M. A. Yassin, T. Fuoco, S. Mohamed-Ahmed, H. Vindenes, K. Mustafa, A. Finne-Wistrand, Mater. Sci. Eng. C 2021, 124, 112020.

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2029/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE