Basic Search / Detailed Display

Author: 劉羽軒
Yu-Hsuan Liu
Thesis Title: 植基於三邊定位的室內定位方法
Indoor Positioning Methods Based on the Trilateration Method
Advisor: 馮輝文
Huei-Wen Ferng
Committee: 林嘉慶
Jia-Chin Lin
張宏慶
Hung-Chin Jang
鍾國亮
Kuo-Liang Chung
馮輝文
Huei-Wen Ferng
Degree: 碩士
Master
Department: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
Thesis Publication Year: 2018
Graduation Academic Year: 106
Language: 中文
Pages: 50
Keywords (in Chinese): 室內定位側方觀測法人群移動手持移動裝置感測裝置系統估計誤差準確度全球定位系統移動通訊雜訊測量位置測量
Keywords (in other languages): Indoor Positioning, Flank Observation, Crowd Simulation, Mobile Handsets, Sensor Systems, Estimation Error, Accuracy, Global Positioning System, Mobile Communication, Noise Measurement, Position Measurement
Reference times: Clicks: 609Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 儘管全球定位系統具有非常高的準確性,但它在室內並不能很好地運用,必須用其他與衛星無關的定位系統來彌補。相較於室外,室內環境普遍較小,導致定位結果之誤差更加明顯。另外,一般是以越容易完成定位或能夠快速定位成功為目標。基於上述考量,本論文將提出幾種不同的定位方法,每種定位方法都有一定的優勢。有限制的兩步法利用兩步法中加強感測器以交換時間來減少固定點需求的功能,增加條件限制以獲得更高的準確性。三步法則是藉由兩步法之特性,將演算法運用到三維場景,不過由於建築物樓層高度特性,對演算法會造成影響。另外,本論文亦應用側方觀測法於定位中,演算法可減少對固定點的需求,使用者本身也不需要移動,但感測器部分需要更多的功能,以適合未來的發展。結合之前多種演算法的特色,可利用側方觀測法減少固定點的能力,透過兩步法特性可進一步減少固定點,因此,可從固定點不足的環境中獲益最多,使用效果好,但對感測器需求是前述幾種方法的總和,而此方法被稱為單步法。經過模擬驗證可知側方觀測法具有以上所有方法的最高精度,而且總體使用率也是方法中較高的,將是定位系統的理想選擇。


    Although the global positioning system (GPS) has a great degree of accuracy, it does not work well for the indoor environment, which has to be filled up with the other positioning system without involving with satellites. Unlike the outdoor environment, the indoor environment is usually tightly spaced, making even the slightest error in positioning become relatively more significant. Besides, one usually expects finishing locating easier or faster. Base on the aforementioned considerations, this paper will propose a few positioning methods. Each of them excels in a certain aspect. For the 2-step method with restriction, it is designed based on the 2-step method with more sensors and locating time to trade off the number of fixed points required. With the added restriction, higher accuracy can be achieved. The 3-step method with or without restriction make the two aforementioned algorithms be feasible for a three dimension scenario. However, the fixed floor height might influence the effectiveness. As for the flank observation method (FOM), it does not need to move and requires fewer fixed points than the trilateration method. Taking the advantages of the previous methods, the 1-step method may benefit most. Via simulations, we demonstrate that FOM has the best accuracy among all the aforementioned methods with an acceptable level of usage. Therefore, FOM is highly recommended for use in the indoor positioning system.

    論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 論文指導教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 考試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 第一章、一章、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 論文組織. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章、二章、相關研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 指紋定位法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 三邊定位法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 兩步法(2SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 第三章、三章、本論文所提出的方法. . . . . . . . . . . . . . . . . . . . . . . 14 3.1 有限制的兩步法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 三步法及有限制的三步法. . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 側方觀測方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 單步法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第四章、四章、數值結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 模擬環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 人群模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.1 限制之設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3.2 各方法間之比較. . . . . . . . . . . . . . . . . . . . . . . . . . 30 第五章、五章、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    [1] X. Hu, M. Stalnacke, T. B. Minde, R. Carlsson, and S. Larsson, “A mobile game to
    collect and improve position of images,” in Proc. International Conference on Next
    Generation Mobile Applications, Services and Technologies, Sept. 2009, pp. 70–73.
    [2] S. Lee, N. Lee, J. Ahn, J. Kim, B. Moon, S. H. Jung, and D. Han, “Construction of
    an indoor positioning system for home iot applications,” in Proc. IEEE International
    Conference on Communications (ICC), May 2017, pp. 1–7.
    [3] T. A. Mounir, P. S. Mohamed, B. Cherif, and B. Amar, “Positioning system for
    emergency situation based on RSSI measurements for WSN,” in Proc. International
    Conference on Performance Evaluation and Modeling in Wired and Wireless Networks
    (PEMWN), Nov. 2017, pp. 1–6.
    [4] T. Wigren, M. Anderson, and A. Kangas, “Emergency call delivery standards impair
    cellular positioning accuracy,” in Proc. IEEE International Conference on Communications,
    May 2010, pp. 1–6.
    [5] E. Kaplan and C. Hegarty, Understanding GPS: Principles and Applications, ser.
    Artech House Mobile Communications Series. Artech House, 2006. [Online].
    Available: https://books.google.com.tw/books?id=V_5OAAAAMAAJ
    [6] T. P. Yunck, W. G. Melbourne, and C. L. Thoenton, “GPS-based satellite tracking
    system for precise positioning,” IEEE Transactions on Geoscience and Remote Sensing,
    vol. GE-23, no. 4, pp. 450–457, July 1985.
    [7] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning
    techniques and systems,” IEEE Transactions on Systems, Man, and Cybernetics,
    Part C (Applications and Reviews), vol. 37, no. 6, pp. 1067–1080, Nov. 2007.
    [8] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless
    personal networks,” IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp.
    13–32, Mar. 2009.
    [9] J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer,
    vol. 34, no. 8, pp. 57–66, Aug. 2001.
    [10] V. Honkavirta, T. Perala, S. Ali-Loytty, and R. Piche, “A comparative survey of
    WLAN location fingerprinting methods,” in Proc. Workshop on Positioning, Navigation
    and Communication, Mar. 2009, pp. 243–251.
    [11] Z. Zheng, L. Liu, C. Zhao, and W. Hu, “High accuracy indoor positioning scheme
    using single LED and camera,” Electronics Letters, vol. 54, no. 4, pp. 227–229, 2018.
    [12] Y. Zhang, L. Deng, and Z. Yang, “Indoor positioning based on FM radio signals
    strength,” in Proc. International Conference on Electronics Instrumentation Information
    Systems (EIIS), June 2017, pp. 1–5.
    [13] E. Cay, Y. Mert, A. Bahcetepe, B. K. Akyazi, and A. S. Ogrenci, “Beacons for indoor
    positioning,” in Proc. International Conference on Engineering and Technology
    (ICET), Aug. 2017, pp. 1–5.
    [14] D. E. Manolakis, “Efficient solution and performance analysis of 3-D position estimation
    by trilateration,” IEEE Transactions on Aerospace and Electronic Systems,
    vol. 32, no. 4, pp. 1239–1248, Oct. 1996.
    [15] M. E. Rusli, M. Ali, N. Jamil, and M. M. Din, “An improved indoor positioning algorithm
    based on RSSI-trilateration technique for Internet of Things (IOT),” in Proc.
    International Conference on Computer and Communication Engineering (ICCCE),
    July 2016, pp. 72–77.
    [16] T. D. Huynh, C. S. Chen, and S.-W. Ho, “Exploiting user movement for position
    detection,” in Proc. IEEE Consumer Communications and Networking Conference
    (CCNC), Jan. 2015, pp. 513–518.
    [17] T. D. Huynh, C. S. Chen, and S. W. Ho, “Localization method for device-to-device
    through user movement,” in Proc. IEEE International Conference on Communication
    Workshop (ICCW), June 2015, pp. 821–826.
    [18] R. Harle, “A survey of indoor inertial positioning systems for pedestrians,” IEEE
    Communications Surveys Tutorials, vol. 15, no. 3, pp. 1281–1293, Jan. 2013.
    [19] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer
    Graphics and Applications, vol. 25, no. 6, pp. 38–46, Nov. 2005.
    [20] 史天元, “「側方觀測」探由(On the origin of flank observation),” 地籍測量,
    vol. 34, no. 2, pp. 17–24, 2015。

    QR CODE