簡易檢索 / 詳目顯示

研究生: 詹鎧慎
Kai-Shen Zhan
論文名稱: 含軸壓力包覆型鋼骨鋼筋混凝土柱之撓曲行為
Flexure Behavior of Encase Steel Reinforced Concrete Columns with Axial Compressive Force
指導教授: 陳正誠
Cheng-Cheng Chen
口試委員: 歐昱辰
Yu-Chen Ou
鍾立來
Lap-Loi Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 包覆型SRC柱耐震設計鋼骨鋼筋混凝土(SRC)箍筋
外文關鍵詞: encased SRC column, earthquake-resistant design, steel reinforced concrete (SRC), transverse steel bar
相關次數: 點閱:189下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文主要說明鋼骨鋼筋混凝土柱在高軸力0.6Agfc'下,受到反覆載重作用的耐震行為。利用7組大型鋼骨鋼筋混凝土柱( SRC )試體之載重試驗,探討箍筋量對SRC柱撓曲延展性的影響。由於現行ACI規範建議RC柱箍筋量公式未考慮軸力增加後其箍筋量是否應有所提升,而TW-SRC規範SRC柱箍筋量公式則由ACI規範演變而來,箍筋量雖考慮鋼骨的圍束效應得以折減,但仍未考慮較高軸力的影響。故本研究藉由實驗探討箍筋量對於鋼骨鋼筋混凝土( SRC )柱在高軸力下耐震行為的影響,7組大型試體包括4組新式SRC( NSRC )柱與3組傳統SRC( TSRC )柱,主要研究參數包括:鋼筋量配置多寡對於SRC柱在強軸受彎矩與弱軸受彎矩對塑性轉角容量的影響;NSRC與TSRC兩者之耐震行為的比較;高軸力對塑性轉角容量與箍筋量的關係。分析結果顯示軸力對於鋼骨韌性影響很大,由無軸力到高軸力之間其韌性折減的相當明顯,尤以D1、D1N、D2系列高軸力下鋼骨鋼筋混凝土柱的韌性為無軸力下的30 - 40%,顯示軸力對於鋼骨鋼筋混凝土柱的影響相當大,則台灣TW-SRC規範建議的箍筋量在軸力變化下卻沒有任何改變,亦即其未考慮軸力對於箍筋量的影響,則其規範建議箍筋量對於高軸力下的柱體可能有不足的疑慮。


This thesis is to experimentally investigate seismic behavior of steel reinforced concrete (SRC) columns subjected to constant axial load combined cyclically lateral loading. Seven large-scale specimens which included 4 New SRC columns (NSRC) and 3 Traditional SRC columns (TSRC) were tested. The ACI code suggested that RC columns required transverse steel bars didn’t considered the axial load effect. And the TW-SRC code required transverse steel bars is to consult the ACI code. Although the TW-SRC code added the steel shape’s confining effect but still didn’t considered the axial load effect. So this thesis focus on the SRC columns required transverse steel bars with axial load effect, and compared with each different steel shape. Analysis result showed that when the cyclic test applied high axial load on specimen, the specimen’s ductility reduced to 30%-40% compared with the specimen has no axial load.

中文摘要............................................................I 英文摘要...........................................................II 誌謝..............................................................III 目錄...............................................................IV 表格索引...........................................................VI 圖片索引..........................................................VII 符號索引............................................................X Chapter 1 緒論 1.1. 前言........................................................1 1.2. 論文大綱....................................................4 1.3. SRC柱箍筋需求量..........................................4 1.4. 文獻回顧...................................................10 Chapter 2 試驗計畫 2.1. 試體設計...................................................19 2.2. 試體製作...................................................27 2.2.1. 材料強度...........................................27 2.2.2. 鋼骨製作...........................................28 2.2.3. 鋼筋製作...........................................30 2.2.4. 基座製作...........................................32 2.2.5. 試體灌漿作業.......................................32 2.3. 試驗裝置...................................................37 2.3.1. 試體架設裝置.......................................37 2.3.2. 量測儀器...........................................57 2.4. 加載歷程...................................................60 Chapter 3 試體斷面彎矩-曲率分析 3.1. 前言.......................................................63 3.2. 鋼筋挫屈應力...............................................65 3.3. 彎矩-曲率分析..............................................67 Chapter 4 結論與建議 4.1. 結論.......................................................85 4.2. 建議.......................................................86 參考文獻...........................................................87 附錄一(試驗構架計算報告書)

[1] ACI Committee 318. “Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05)”. Farmington Hills (MI): American Concrete Institute; 2005
[2] 內政部建築研究所 “鋼骨鋼筋混凝土構造設計規範與解說”;2004
[3] American Institute of Steel Construction. "Specification for Structural Steel Buildings”. Chicago (IL): AISC Inc.; 2005.
[4] Kenneth J. Elwood, Joe Maffei, Kevin A. Riederer, Karl Telleen. “Improving column confinement provisions in the ACI 318 Building Code”
[5] Park, R., and Paulay, T. (1975). “Reinforced concrete structures”, John Wiley & Sons, New York, N.Y.
[6] James M. Ricles, and Shannon D. Paboojian, S. D. “Seismic performance of steel-encased composite columns”. Journal of Structural Engineering.
[7] H.-L. Hsu, F.-J. Jan, J.-L. Juang. “Performance of composite members subjected to axial load and bi-axial load”. Journal of Constructional Steel Research.
[8] 陳正誠、黃氏秋水 “含軸壓力鋼骨鋼筋混凝土柱之耐震行為” 國立台灣科技大學營建工程所 碩士論文;2009.
[9] Imbsen, Charles C. XTRACT Software, Cross section analysis program for structural engineers. Single user v-2.6.2, Imbsen and associates, Inc.; 2002.
[10] 陳正誠、沈家豪 “鋼骨鋼筋混凝土柱塑性轉角容量之研究” 國立台灣科技大學營建工程所 碩士論文;2010.
[11] American Institute of Steel Construction."Seismic Provisions for Structural Steel Buildings”. Chicago (IL): AISC Inc.; 2005.
[12] 陳正誠、陶其駿、楊雄清、蔡煒銘“受十字鋼骨斷面圍束混凝土應力-應變行為之試驗研究” 中國土木水利工程專刊 第二十二卷 第四期 ;2010.
[13] 陳正誠、許書銘“圍束效應下鋼筋混凝土梁斷面曲率延展比與塑性轉角之經驗式”力學專刊 系列B 第十九卷 第一期 ;2003.
[14] Paulay, T., and Priestley, M. J. N.,“Seismic Design of Reinforced Concrete and Masonry Buildings”, Chapter3(1991).
[15] Rodriquez, M., “Effects of Cyclic Behavior of Reinforcing Steel on Seismic Performance of Reinforced Concrete Members,” SP-184-4, PP.45-64(1999)
[16] 中國土木水利工程學會,”混凝土工程設計規範與解說”(2000)

QR CODE