簡易檢索 / 詳目顯示

研究生: 盧脩塵
Hsiu-Chen Lu
論文名稱: 基於類神經網路模型之具障礙物雙線驅動連續體機器人位移分析
Displacement Analysis of a Two-Wire-Driven Continuum Robot with a Contacted Obstacle based on Neural Network Model
指導教授: 郭進星
Chin-Hsing KUO
口試委員: 林其禹
Chyi-Yeu Lin
林柏廷
Po-Ting Lin
陳冠辰
Guan-Chen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 連續體機器人連續體機構類神經網絡接觸之障礙位置分析
外文關鍵詞: continuum robot, continuum mechanism, contacted obstacle, displacement analysis, neural network
相關次數: 點閱:285下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續體機器人是近年來非常熱門的研究領域。為了控制機器人,必須先知道機器人的位置,因此機器人的位置分析在機器人的研究領域中非常重要。在有關於連續體機器人的研究中,有很多研究對於末端有附載的連續體機器人做出完善的運動學分析,也有非常多關於路徑規劃的研究,教導機器人如何繞過障礙物。繞過障礙物是連續體機器人的一個特點,然而在繞過障礙物的同時,機器人很容易與障礙物產生接觸;針對這個問題,目前沒有任何文獻提出運動學分析,因此從接觸障礙物之線驅動連續體機器人之位置分析著手。傳統的運動學模型可粗分為幾何模型及樑理論模型,幾何模型過於簡化因此不考慮,樑理論模型則過於複雜,連續體機器人與障礙物的接觸點在運動的過程中不停的改變,模型必須不斷即時更新資訊才能使用。最後,決定使用類神經網絡模型,並透過多次實驗獲得數據,藉以訓練類神經網絡模型。訓練完成的模型,可迅速得到準確的機器人位置資訊。


    Continuum robot becomes more and more popular in recent years. Displacement analysis is necessary to find the position of continuum robots. In robot control, there are a lot of researches on path planning and how to bypass the obstacle. There are also many methods can be used to analyze the displacement of continuum robots like geometry models and beam theory models. These methods can also solve the kinematics problem about continuum robot with end loads. However, there is no research about what will happen when a continuum robot contacts an obstacle and keep going. Therefore, the purpose of this thesis is analyzing displacement of a continuum robot with a contacted obstacle. The geometry models are too simple, some of the beam theory models are too complicated, and some cannot solve this problem. Afterward, the neural network model is chosen to analyze displacement of continuum robot with contacted obstacle although there is no research about displacement analysis using a neural network model. By using the neural network model, the user only needs to decide what are the input data, the target data, and then do some experiments to get data. These data would be used to train the neural network model. After that, a trained model would be produced. The trained neural network model will output the position and orientation of the end-effector of the robot in a short time.

    摘 要 1 Abstract 2 致 謝 3 Table of Contents 4 List of Tables 6 List of Figures 7 Chapter 1 Introduction 9 1.1 Motivations and Objectives 9 1.2 Literature Review 11 1.2.1. Geometry Models 12 1.2.2. Beam Theory Models 12 1.2.3. Neural Network Model 13 1.3 Contributions 13 1.4 Thesis Organization 14 Chapter 2 Neural Network Model 16 2.1 Principle of Neural Network 16 2.2 Types of Neural Network 19 2.3 Algorithms of Neural Network 20 2.4 Advantage and Disadvantage of Neural Network Model 21 2.5 Summary 21 Chapter 3 Displacement Analysis for a Large-Deflection Beam with a Contacted Obstacle 23 3.1 Problem Description 23 3.2 Data Collection from ANSYS Simulation 24 3.3 Training by Neural Network Model 26 3.4 Numerical Example 28 3.5 Results and Discussions 29 3.6 Summary 29 Chapter 4 Displacement Analysis of a Two-Wire-Driven Continuum Robot with a Contacted Obstacle 30 4.1 Problem Description 30 4.2 Data collection from Experimental Study 32 4.2.1. Experimental Setup 32 4.2.2. Image Processing 33 4.2.3. Data Collection 38 4.3 Training by Neural Network Model 41 4.4 Numerical Example 48 4.5 Results and Discussions 53 4.6 Summary 54 Chapter 5 Conclusions and Future Works 55 5.1 Conclusions 55 5.2 Future Works 56 References 57 Appendix: Execution of Neural Network Models on MATLAB 63

    [1] Anscombe, R., Buckinham, R., Graham, A., Parry, N., Lichon, M., 2006, “Snake-Arm Robots Conduct Nuclear Maintenance,” Proceedings of the International Youth Nuclear Congress Olkiluoto, Finland, 18-23 June, p 246.
    [2] Cies´lak, R., Morecki, A., 1999, “Elephant Trunk Type Elastic Manipulator-a Tool for Bulk and Liquid Materials Transportation,” Robotica, 17(1), pp. 11-16.
    [3] Immega, G., Antonelli, K., Ko, J., 1995, “Teleoperation of the Ksi Tentacle Manipulator for Hot Cell Decontamination,” IEEE International Conference on Intelligent Systems for the 21st Century, Nagoya, Japan, 21-27 May, pp. 2133-2136.
    [4] Lane, D. M., Davies, J. B. C., Robinson, G., O’Brien, D. J., Sneddon, J., Seaton, E., Elfstrom, A., 1999, “The Amadeus Dextrous Subsea Hand: Design, Modeling, and Sensor Processing,” IEEE Journal of Oceanic Engineering, 24(1), pp. 96-111.
    [5] Suzumori, K., Iikura, S., Tanaka, H., 1992, “Applying a Flexible Microactuator to Robotic Mechanisms,” IEEE Control Systems, 12(1), pp. 21-27.
    [6] Tsukagoshi, H., Kitagawa, A., Segawa, M., 2001, “Active Hose: An Artificial Elephant's Nose with Maneuverability for Rescue Operation,” IEEE International Conference on Robotics and Automation, Seoul, Korea, 21-26 May, Vol. 3, pp. 2454-2459.
    [7] Xu, K., Liu, H., 2016, “Continuum Differential Mechanisms and Their Applications in Gripper Designs,” IEEE Transactions on Robotics, 32(3), pp. 754-762.
    [8] Roy, R., Wang, L., Simaan, N., 2017, “Modeling and Estimation of Friction, Extension, and Coupling Effects in Multisegment Continuum Robots,” IEEE/ASME Transactions on Mechatronics, 22(2), pp. 909-920.
    [9] Ikuta, K., Tsukamoto, M., Hirose, S., 1988, “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,” IEEE International Conference on Robotics and Automation, Phililadelphia, PA, USA, 24-29 April, pp. 427-430.
    [10] Nakamura, Y., Matsui, A., Saito, T., Yoshimoto, K., 1995, “Shape-Memory-Alloy Active Forceps for Laparoscopic Surgery,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, pp. 2320-2327.
    [11] Peirs, J., Reynaerts, D., Brussel, H. V., Gersem, G. D., Tang, H. T., 2003, “Design of an Advanced Tool Guiding System for Robotic Surgery,” IEEE International Conference on Robotics and Automation, Tapei, Taiwan, 14-19 September, pp. 2651-2656.
    [12] Webster, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G. S., Okamura, A. M., 2006, “Nonholonomic Modeling of Needle Steering,” The International Journal of Robotics Research, 25(5-6), pp. 509-525.
    [13] Dario, P., Carrozza, M. C., Marcacci, M., D’Attanasio, S., Magnami, B., Tonet, O., Megali, G., 2000, “A Novel Mechatronic Tool for Computer-Assisted Arthroscopy,” IEEE Transactions on Information Technology in Biomedicine, 4(1), pp. 15-29.
    [14] Ding, J., Goldman, R. E., Xu, K., Allen, P. K., Fowler, D. L., Simaan, N., 2013, “Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery,” IEEE/ASME Transactions on Mechatronics, 18(5), pp. 1612-1624.
    [15] Burgner-Kahrs, J., Rucker, D. C., Choset, H., 2015, “Continuum Robots for Medical Applications: A Survey,” IEEE Transactions on Robotics, 31(6), pp. 1261-1280.
    [16] Coemert, S., Gao, A., Carey, J. P., Traeger, M. F., Taylor, R. H., Lueth, T. C., Armand, M., 2016, “Development of a Snake-Like Dexterous Manipulator for Skull Base Surgery,” Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, IEEE, pp. 5087-5090.
    [17] Gao, A., Murphy, R. J., Liu, H., Iordachita, I. I., Armand, M., 2017, “Mechanical Model of Dexterous Continuum Manipulators with Compliant Joints and Tendon/External Force Interactions,” IEEE/ASME Transactions on Mechatronics, 22(1), pp. 465-475.
    [18] Gravagne, I. A., Rahn, C. D., Walker, I. D., 2003, “Large Deflection Dynamics and Control for Planar Continuum Robots,” IEEE/ASME transactions on mechatronics, 8(2), pp. 299-307.
    [19] Li, Z., Du, R., 2013, “Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot,” International Journal of Advanced Robotic Systems, 10(4), p. 209.
    [20] Kimball, C., Tsai, L.-W., 2002, “Modeling of Flexural Beams Subjected to Arbitrary End Loads,” Journal of Mechanical Design, 124(2), pp. 223-235.
    [21] Su, H.-J., 2008, “A Load Independent Pseudo-Rigid-Body 3r Model for Determining Large Deflection of Beams in Compliant Mechanisms,” ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. 109-121.
    [22] Su, H. J., 2009, “A Pseudorigid-Body 3r Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads,” ASME Journal of Mechanisms and Robotics, 1(2), p. 021008.
    [23] Rucker, D. C., Webster, R. J., 2011, “Statics and Dynamics of Continuum Robots with General Tendon Routing and External Loading,” IEEE Transactions on Robotics, 27(6), pp. 1033-1044.
    [24] Chimento, J., Lusk, C., Alqasimi, A., 2014, “A 3-D Pseudo-Rigid Body Model for Rectangular Cantilever Beams with an Arbitrary Force End-Load,” ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), Buffalo, NY., USA, 17-20 August, pp. DETC2014-34292.
    [25] Chirikjian, G. S., Burdick, J. W., 1994, “A Modal Approach to Hyper-Redundant Manipulator Kinematics,” IEEE Transactions on Robotics and Automation, 10(3), pp. 343-353.
    [26] Ebeert-Uphoff, I., Chirikjian, G. S., 1996, “Inverse Kinematics of Discretely Actuated Hyper-Redundant Manipulators Using Workspace Densities,” IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22-28 April, pp. 139-145.
    [27] Hirose, S., Ma, S., 1991, “Coupled Tendon-Driven Multijoint Manipulator,” IEEE International Conference on Robotics and Automation, Osaka, Japan, 3-5 November, pp. 1268-1275.
    [28] Jones, B. A., Walker, I. D., 2006, “Kinematics for Multisection Continuum Robots,” IEEE Transactions on Robotics, 22(1), pp. 43-55.
    [29] Jones, B. A., Walker, I. D., 2006, “Practical Kinematics for Real-Time Implementation of Continuum Robots,” IEEE Transactions on Robotics, 22(6), pp. 1087-1099.
    [30] Jones, B. A., Walker, I. D., 2007, “Limiting-Case Analysis of Continuum Trunk Kinematics,” IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April, pp. 1363-1368.
    [31] Lian, W. N., 2012, Kinematic Analysis of a Superelastic-Wire-Embedded Flexible Tube Mechanism, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [32] Lian, W.-N., Kuo, C.-H., 2013, “Inverse Kinematics of a Wire-Actuated Constant-Curvature Flexural Mechanism in General Geometry,” The 3rd IFToMM International Symposium on Robotics and Mechatronics, Singapore, 2-4 October.
    [33] Mahl, T., Mayer, A. E., Hildebrandt, A., Sawodny, O., 2013, “A Variable Curvature Modeling Approach for Kinematic Control of Continuum Manipulators,” American Control Conference, Washington, DC, USA, 17-19 June, pp. 4945-4950.
    [34] Paljug, E., Ohm, T., Hayati, S., 1995, “The Jpl Serpentine Robot: A 12-Dof System for Inspection,” IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21-27 May, pp. 3143-3148.
    [35] Suthakorn, J., Chirikjian, G. S., 2001, “A New Inverse Kinematics Algorithm for Binary Manipulators with Many Actuators,” Advanced Robotics, 15(2), pp. 225-244.
    [36] Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H., 2007, “Design of a Modular Snake Robot,” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November, pp. 2609-2614.
    [37] Chirikjian, G. S., Burdick, J. W., 1994, “A Modal Approach to Hyper-Redundant Manipulator Kinematics,” IEEE Transactions on Robotics and Automation, 10(3), pp. 343-354.
    [38] Paljug, E., Ohm, T., Hayati, S., 1995, “The Jpl Serpentine Robot: A 12-Dof System for Inspection,” Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on, IEEE, Vol. 3, pp. 3143-3148.
    [39] Ebert-Uphoff, I., Chirikjian, G. S., 1996, “Inverse Kinematics of Discretely Actuated Hyper-Redundant Manipulators Using Workspace Densities,” Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, IEEE, Vol. 1, pp. 139-145.
    [40] Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H., 2007, “Design of a Modular Snake Robot,” Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, IEEE, pp. 2609-2614.
    [41] Mahl, T., Mayer, A. E., Hildebrandt, A., Sawodny, O., 2013, “A Variable Curvature Modeling Approach for Kinematic Control of Continuum Manipulators,” American Control Conference (ACC), 2013, IEEE, pp. 4945-4950.
    [42] Yu, Y.-Q., Zhu, S.-K., 2017, “5r Pseudo-Rigid-Body Model for Inflection Beams in Compliant Mechanisms,” Mechanism and Machine Theory, 116, pp. 501-512.
    [43] Howell, L., Midha, A., Norton, T., 1996, “Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms,” ASME Journal of Mechanical Design, 118(1), pp. 126-131.
    [44] Chen, G. M., Xiong, B. T., Huang, X. B., 2011, “Finding the Optimal Characteristic Parameters for 3r Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer,” Precision Engineering, 35(3), pp. 505-511.
    [45] Khoshnam, M., Patel, R. V., 2013, “A Pseudo-Rigid-Body 3r Model for a Steerable Ablation Catheter,” IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May, pp. 4427-4432.
    [46] Truesdell, C., Euler, L., 1960, The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788: Introduction to Leonhardi Euleri Opera Omnia Vol X Et Xi Seriei Secundae, Vol. 11, Orell Füssli.
    [47] Gravagne, I. A., Walker, I. D., 2002, “Manipulability, Force, and Compliance Analysis for Planar Continuum Robots,” IEEE Transactions on Robotics and Automation, 18(3), pp. 263-273.
    [48] Li, C., Rahn, C. D., 2002, “Design of Continuous Backbone, Cable-Driven Robots,” ASME Journal of Mechanical Design, 124(2), pp. 265-271.
    [49] Trivedi, D., Lotfi, A., Rahn, C. D., 2008, “Geometrically Exact Models for Soft Robotic Manipulators,” IEEE Transactions on Robotics, 24(4), pp. 773-780.
    [50] Awtar, S., Sen, S., 2010, “A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation,” ASME Journal of Mechanical Design, 132(8), p. 081008.
    [51] Simaan, N., Xu, K., 2010, “Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals,” ASME Journal of Mechanisms and Robotics, 2(1), p. 011006.
    [52] Hasanzadeh, S., Janabi-Sharifi, F., 2014, “An Efficient Static Analysis of Continuum Robots,” ASME Journal of Mechanisms and Robotics, 6(3), p. 031011.
    [53] Pan, T. Y., 2014, Variable-Curvature Kinematic Models for Wire-Actuated Continuum Robots: A Comparative Study, Master thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [54] Walker, I. D., 2013, “Continuous Backbone “Continuum” Robot Manipulators,” Isrn robotics, 2013
    [55] McCulloch, W. S., Pitts, W., 1943, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” The bulletin of mathematical biophysics, 5(4), pp. 115-133.
    [56] Rosenblatt, F., 1958, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological review, 65(6), p. 386.
    [57] Zell, A., 1994, Simulation Neuronaler Netze, Vol. 1, Addison-Wesley Bonn.
    [58] Werbos, P., 1974, “Beyond Regression: New Fools for Prediction and Analysis in the Behavioral Sciences,” PhD thesis, Harvard University,
    [59] Amazon Sagemaker Customers. [cited; Available from: https://amzn.to/2LyFMOF.
    [60] Azure Solutions. [cited; Available from: https://bit.ly/2BRR1w6.
    [61] Stories About How Watson and Ai Are Changing Business. [cited; Available from: https://ibm.co/2LwLz7g.
    [62] Kuang Tai Metal Industrial Co.,Ltd. [cited; Available from: http://www.kuangtai.com/tw/.
    [63] Hiwin Single Axis Robot. [cited; Available from: https://bit.ly/2M3lxVz.

    QR CODE