簡易檢索 / 詳目顯示

研究生: 尤清
Ching - Yu
論文名稱: 無扇葉風扇之數值與實驗整合研究
Numerical and Experimental Study of Bladeless Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 莊福盛
Fu-Sheng Chuang
蔡博章
Bor-Jang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 195
中文關鍵詞: 無扇葉風扇氣流倍增器數值模擬管路風機
外文關鍵詞: Bladeless fan, air muliplier, numerical simulation, in-line fan
相關次數: 點閱:282下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著人們對生活品質之要求逐漸提高,家電產品也不斷地創新研發,企圖在性能與節能間尋求平衡,並為人們打造安靜又舒適的生活空間,而家庭必備的電風扇發展至今,也不斷地朝這個目標邁進。本文所探討之無扇葉風扇,有別於以往風扇之設計,其外型簡單極具現代感、無可見之轉動葉輪,相較於傳統電風扇增加了幾分安全性;且少了轉動葉輪便無需加裝安全護網,不僅外型簡潔且清洗也更加容易,上述優點使得無扇葉風扇相當受到矚目。然而其發展至今,鮮少有針對其性能及氣流特性做系統化探討;因此,本研究透過數值模擬進行相關參數分析,以期能取得重要設計參數與其影響。
      將無扇葉風扇分為引流罩與內部風扇兩個部分進行設計,先針對引流罩之入口條件進行研究探討,並透過數值模擬觀察各項參數變化,對其氣流場及性能之影響;另一方面也進行內部風扇之改良設計,藉由數值模擬分析軟體,針對內部風扇之葉片數、扭轉角、葉輪中心體、導葉片及入口等參數來進行設計,並了解各參數設計方案之成效。而後將兩者最適化之結果整合,以獲得完整之無扇葉風扇最佳化設計,並將此最適化之模型利用CNC加工技術製作,以供進行相關之氣動特性量測與噪音分析,藉此來驗證數值模擬與實驗數據之準確性。
      所得之測試結果與數值模擬相互比較後,顯示不論是內部風扇或者引流罩,其模擬值與實驗之性能趨勢相當一致,雖然之間有些許誤差,但仍在可接受之範圍內,因此證實數值模擬具有一定的準確度。而與市售樣品之性能進行比較,結果顯示新設計內部風扇之最大壓力高於市售樣品8.9%,最大流量則大幅提升50.3%,而引流罩之組合則提高了25.4%的總引流量。綜合上述之研究成果顯示,本文所設計之無扇葉風扇,已達到整體性能提升之目標,同時規劃出完整之設計方法可供業界作為參考。


      Appliances are constantly studied and developed with innovative ideas with the intention to furnish a quiet and comfortable living space for people. Recently, the bladeless fan with a simple and modern shape is introduced and becoming popular in the residential fan market. There is no impeller existed in its appearance, so the possible damage caused by the rotating blades is eliminated completely. Besides, this novel design makes the structure simpler and easier to maintain. Obviously, the safety and quiet features are the major reasons for its popularity and acceptance by customers. However, the operating principle and flow characteristics of this bladeless fan are not well understood. Thus this research intends to investigate the physical mechanisms and identify the design parameters of this innovative fan in a systematic manner by a combined effort of numerical and experimental tools.
      Initially, the Dyson bladeless fan is chosen to analyze its construction and performance measurement for serving as the reference fan. This bladeless fan can be divided into three parts which includes the fan stand, the inducing rim, and the inner fan. Among them the inner fan generates the main airstream to flow through the air path of inducing rim and is the major flow source. The inducing rim provides the appropriate flow passage to create a high-velocity jet for inducing more air stream at the rim exit. Thus, the sum of outlet stream of inner fan and the induced flow around the ring is the total flow rate for this bladeless fan. Clearly, the inner fan and the inducing rim are the key modified portions for enhancing its overall performance and become the investigated topic of this work.
      At first, several parameters on the geometry of inducing ring, such as the cross-sectional shape, the inclined angle and clearance of air outlet, are studied systematically for enlarging the induced airflow from the rim. Next, an in-line (mixed-flow) fan is selected and designed for serving as the airflow generator (i.e., the inner fan). Note that this new inner fan is an optimized design via a comprehensive parametric analysis on the inlet diameter, the blade number, the twist angle, the central body, and the guide vane. Hence, an adequate design parameter setting of these inducing ring and inner fan is obtained after the aforementioned design procedure and formed the optimized bladeless fan set to yield an improved aerodynamic performance.
      Furthermore, the prototype of optimized fan design is manufactured by the CNC technique to carry out the corresponding experimental performance verifications. To ensure a reliable outcome, bladeless fan’s performance and noise tests are executed in AMCA and semi-anechoic chambers by following AMCA-210-99, CNS-547 and CNS-8753 codes. Consequently, by comparing the experimental and numerical results, a remarkable agreement between these performance data is observed for verifying the reliability of numerical simulation. Besides, under the same rotating speed, the aerodynamic performance of optimum inner fan is superior to the reference fan by 50.3% and 8.9% enhancements on its maximum flow rate and static pressure, respectively. Also the total overall flow rate of the assembled bladeless fan is improved by a significant 25.4%. In summary, this study successfully establishes a reliable and systematic scheme to design the bladeless fan. Also, the corresponding performance influences caused by those important parameters are analyzed and summed up for serving as the design reference for the bladeless fan.

    摘 要 I Abstract III 致 謝 V 圖索引 X 表索引 XIV 第一章 緒論 1 1.1 前言 1 1.2 風扇的種類 4 1.3 無扇葉風扇 8 1.4 文獻回顧 11 1.4.1 風扇設計 11 1.4.2 數值模擬 14 1.5 研究動機與流程規劃 16 1.5.1 研究動機 16 1.5.2 研究流程規劃 19 第二章 數值與實驗方法 23 2.1 統御方程與紊流模式 23 2.1.1 統御方程式 24 2.1.2 紊流模式理論 27 2.2 數值計算方法 28 2.2.1 數值模擬基本流程 30 2.2.2 求解流程 32 2.2.3 離散化方程式 34 2.2.4 上風差分法 36 2.2.5 速度與壓力耦合 37 2.3 邊界條件設定與收斂判定法則 40 2.4 實驗方法 44 第三章 引流罩設計與模擬分析 50 3.1 數值模型之建立 51 3.1.1 模型建立 51 3.1.2 網格建立 53 3.2 入口條件 56 3.3 環形之剖面 59 3.4 剖面之出口角 67 3.5 出口孔隙 77 3.6 外環幾何 83 第四章 內部風扇單體之設計與改善 97 4.1 模型建立 98 4.2 網格建立 101 4.3 葉輪設計 103 4.3.1 葉片數 103 4.3.2 扇葉扭轉角 107 4.3.3 葉輪中心體 110 4.4 導葉片設計 115 4.5 風扇入口直徑 117 4.6 無扇葉風扇系統分析 121 第五章 實驗量測與結果分析 128 5.1 風扇性能與噪音實驗設備 129 5.1.1 性能測試設備 130 5.1.2 性能測試儀器 134 5.1.3 噪音測試設備 137 5.2 實驗結果分析 139 5.2.1 內部風扇之性能量測結果分析 139 5.2.2 完整無扇葉風扇性能量測與結果分析 152 5.2.3 噪音量測結果分析 159 第六章 結論與建議 165 6.1 結論 165 6.2 建議 172

    [1] 台達風扇官網 http://www.delta.com.tw/
    [2] Bleier, Frank P., “Fan Handbook: Selection, Application, and Design”, McGraw Hill, 1997.
    [3] Lazzaretto, A., “A Criterion to Define Cross-Flow Fan Design Parameters”, ASME J. Fluids Eng., Vol. 125, pp. 680–683, 2003.
    [4] 中國報 http://www.chinapress.com.my/node/445785
    [5] 戴森官網 http://www.dyson.com/
    [6] 甫佳電器 http://www.fuchia.tw/fuchia/blog/?p=2251
    [7] 陳世雄,“動力渦輪機組規劃設計”,工研院機械所研究報告,1995年。
    [8] Eck, B., “Fans: Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans”, Program on Press, New York, 1973.
    [9] 林顯群、林益輝、賴豐泉,“吹風機性能及噪音之改善研究”,中華民國「航太學會/燃燒學會/民航學會」航太聯合會議,高雄,2002年。
    [10] Lee Y. C., Chen L. F., Chou Y. M., “Research and Development of an In-Line Fan”, ITRI Report, Energy Lab., 2005.
    [11] 林顯群、陳來富、周雅文、蔡明倫、周志成,“In-Line Fan流場模擬分析”,中國機械工程學會第二十三屆全國學術研討會論文集,台南永康,2006年。
    [12] 王昱能,“管流風扇之導流葉片設計與流場數值分析”,國立台灣科技大學機械工程系碩士論文,2008年。
    [13] Amone, A., “Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method”, NASA TM-106266, 1993.
    [14] Su, M. M., Gu, C. A., and Miao, Y. M., “Numerical Study of Viscous Flow Field in Mixed-Flow Fan”, Journal of Xi’an Jiaotong University, Vol. 30, No. 10, pp. 55-63, 1996.
    [15] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [16] Kokturk, T., “Design and Performance Analysis of a Reversible Axial Flow Fan”, M.S. Thesis, Middle East Technical University, February 2005.
    [17] Elhadi, E. E. and Wu, K., “Study of Tip Vortex in Open Axial Flow Fan Using CFD and PIV Techniques”, 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2005), Egypt, Sept. 2005.
    [18] 林育洲,“軸流風扇之數值與實驗分析”,國立台灣工業技術學院機械工程技術研究所碩士論文,1997年。
    [19] 簡宏斌,“PC風扇之三維數值模擬分析”,國立台灣工業技術學院機械工程技術研究所碩士論文,1998年。
    [20] 黃家烈、林顯群、許豐麟,“進風口面積在新式筆記型電腦冷卻扇之研究”,中華民國機械工程學會第十七屆全國學術研討會論文集,高雄,621-628 頁,2000 年。
    [21] 黃家烈,“筆記型電腦散熱風扇之研究”,國立台灣科技大學機械工程技術研究所博士論文,2001年。
    [22] 周建安,“小型冷卻風扇在不同流阻下之性能研究”,國立台灣科技大學機械工程技術研究所博士論文,2004年。
    [23] 洪國泰,“小型軸流風扇之設計、模擬與實驗整合研究”,國立台灣科技大學機械工程系碩士論文,2007年。
    [24] 蔡明倫,“風扇性能評估與設計方法之整合研究”,國立台灣科技大學機械工程技術研究所博士論文,2010年。
    [25] ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), “Laboratory Method of Testing Fans for Aerodynamic Performance Rating”, Air Movement and Control Association, Inc., 1999.
    [26] CNS 547, “Electric Fan (Desk and Wall Mounting Type)” Chinese National Standard, 1982.
    [27] CNS 8753, “Determination of Sound Power Level of Noises for Fan, Blower, and Compressors”, Chinese National Standard, 1982.
    [28] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”,Academic Press, London, England, 1972.
    [29] ISO 3745, “Acoustics – Determination of Sound Power Levels of Noise Sources Using Sound Pressure – Precision Methods for Anechoic and Hemi-Anechoic Rooms”, 2003.
    [30] Van, Dooremaal and Raithby, G. D., “Enhencements of The SIMPLE Method for Predicting Incompressible Fluid Flows”, 1983.
    [31] 廖健瑋,“風扇輔助空調環境之舒適度研究”,國立台北科技大學能源與冷凍空調工程系碩士論文,2011年。

    QR CODE