簡易檢索 / 詳目顯示

研究生: 張嘉紘
Chia-Hung Chang
論文名稱: 實作第五代行動通訊雲端無線電接取網路之基於容器的虛擬化平台
An experimental platform of 5G cloud radio access networks using container-based virtualization
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 曾志成
Chih-Cheng Tseng
鄭瑞光
Ray-Guang Cheng
鄧德雋
Der-Jiunn Deng
林春成
Chun-Cheng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 33
中文關鍵詞: 容器虛擬化雲端無線電接取網路開放空口軟體定義無線電長期演進技術
外文關鍵詞: container, virtualization, C-RAN, OpenAirInterface, software define radio, LTE
相關次數: 點閱:444下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線電存取網路虛擬化旨為將基礎建設與無線電資源的抽象化與共享化,其實現軟體無線電技術,將基地台區分為硬體遠端射頻元件RRH (remote radio head) 與軟體基頻元件BBU (baseband unit) ,可以大幅將地降低佈署與營運的成本、節約能源並且提高資源使用效率,故其為達成5G行動通訊網路高效率與低延遲之嚴格要求的關鍵技術。本論文針對雲端無線電存取網路虛擬化,利用USRP (Universal Software Radio Peripheral) 硬體,結合開源軟體OpenAirInterface,並且導入開源容器技術Docker,實作可攜帶和低價的5G雲端無線電存取網路虛擬化實驗平台,完整地包含BBU資源池、與核心網路等元件。

    在此實驗平台中,我們透過輕量化的Docker動態開關容器而能有效率地配置BBU給RRH。前端網路透過封包化的Ethernet來支援點對多點傳輸,降低佈署成本與提高使用效率。此低價的實驗平台可供學術界驗證5G電信網路中雲端無線電存取網路上所設計的機制與開發的理論模型,包含底層的干擾控制、節能設計、存取控制、負載平衡、網路架構設計、流量控制等。整體規劃不僅將深入探討滿足5G行動通訊技術所需的關鍵特性,並在此實驗平台上試驗各種可能的解法與可行性。


    The aim of radio access network virtualization is abstracting, sharing for infrastructure and radio resources. It implements software-defined radio technology by dividing base station into remote radio heads (RRH) and baseband unit (BBU). It is a key technique to reach requirements for high efficiency and low latency for 5G mobile communication network by reducing the cost of deployment and operations, and enhancing the efficiency of using resources. The article focuses on cloud radio access network virtualization, uses USRP (Universal Software Radio Peripheral) hardware with open-source software OpenAirInterface, and imports open-source container technology Docker to implement portable, inexpensive and energy-saving 5G cloud radio access network virtualization experiment platform including BBU pool, EPC (Evolved Packet Core Network) , etc.

    We can efficiently configure BBU to RRH by dynamic opening container via Docker in experiment platform. With packaged Ethernet fronthaul that supports multipoint transmission, it can reduce the cost of deployment and enhance the efficiency of using resources. The low price experiment platform provides academia to verify mechanisms and theoretical models of cloud radio access network for 5G telecommunications networks, including interference control on the low layer, the design of energy-saving, access control, load balancing, flow control, etc. Our plan is to explore key features required by 5G mobile communication technology and to test every possible solution with feasibility in the experimental platform.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 LTE solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 C-RAN related paper . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 C2RAN (container-based cloud virtualization platform) . . . . . . . . . . 18 4 Experiment and Performance Evaluation . . . . . . . . . . . . . . . . . . . 21 4.1 Experiment set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Performance evaluation of experiment . . . . . . . . . . . . . . . . . . 23 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    [1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,
    and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32,
    no. 6, pp. 1065–1082, June 2014.
    [2] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
    V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5g on the horizon: Key
    challenges for the radio-access network,” IEEE Veh. Technol. Mag., vol. 8,
    no. 3, pp. 47–53, July 2013.
    [3] E. Hossain, M. Rasti, H. Tabassum, and A. Abdelnasser, “Evolution toward 5G
    multi-tier cellular wireless networks: An interference management perspective,”
    IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 118–127, June 2014.
    [4] W. Cheng, X. Zhang, and H. Zhang, “Heterogeneous statistical QoS provisioning
    for downlink transmissions over mobile wireless cellular networks,” in Proc.
    IEEE GLOBECOM 2014, Dec. 2014, pp. 4622–4628.
    [5] C-RAN. [Online]. Available: http://en.wikipedia.org/wiki/C-RAN
    [6] China Mobile Research Institute, “The 1st C-RAN International Workshop,”
    Available: http://labs.chinamobile.com/focus/C-RAN.
    [7] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key technologies
    for 5G heterogeneous cloud radio access networks,” IEEE Netw., vol. 29,
    no. 2, pp. 6–14, Mar. 2015.
    [8] L. Chen, H. Jin, H. Li, J.-B. Seo, Q. Guo, and V. Leung, “An energy efficient
    implementation of C-RAN in HetNet,” in Proc. IEEE VTC 2014, Sept. 2014,
    pp. 1–5.
    [9] R. Wang, H. Hu, and X. Yang, “Potentials and challenges of C-RAN supporting
    Multi-RATs toward 5G mobile networks,” IEEE Access, vol. 2, pp. 1187–1195,
    Oct. 2014.
    [10] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger,
    and L. Dittmann, “Cloud RAN for mobile networks-a technology overview,”
    IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426, Mar. 2015.
    [11] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some research
    issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp.
    358–380, Aug. 2014.
    [12] ——, “Wireless virtualization for next generation mobile cellular networks,”
    IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 61–69, Feb. 2015.
    [13] S. Costanzo, D. Xenakis, N. Passas, and L. Merakos, “OpeNB: A framework
    for virtualizing base stations in LTE networks,” in Proc. IEEE ICC 2014, June
    2014, pp. 3148–3153.
    [14] P. Rost, C. J. Bernardos, A. D. Domenico, M. D. Girolamo, M. Lalam,
    A. Maeder, D. Sabella, and D. Wübben, “Cloud technologies for flexible 5G
    radio access networks,” IEEE Commun. Mag., vol. 52, no. 5, pp. 68–76, May
    2014.
    [15] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
    D. Wübben, A. Dekorsy, and G. Fettweis, “Benefits and challenges of virtualization
    in 5G radio access networks,” IEEE Commun. Mag., vol. 53, no. 12,
    pp. 75–82, Dec. 2015.
    [16] O. Al-Khatib, W. Hardjawana, and B. Vucetic, “Wireless networks virtualisation:
    Traffic modeling and spectrum sharing,” in Proc. IEEE ICC 2015, June
    2015, pp. 5859–5864.
    [17] C. Liang and F. R. Yu, “Virtual resource allocation in information-centric wireless
    virtual networks,” in Proc. IEEE ICC 2015, June 2015, pp. 3915–3920.
    [18] C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul
    for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88, Sept. 2015.
    [19] Amarisoft official site. [Online]. Available: http://amarisoft.com/
    [20] Open Air Interface project official site. [Online]. Available: http://
    openairinterface.eurecom.fr/
    [21] Y. Lin, L. Shao, Z. Zhu, Q. Wang, and R. Sabhikhi, “Wireless network cloud:
    Architecture and system requirements,” IBM Journal of Research and Development,
    vol. 54, no. 1, pp. 4:1–4:12, 2010.
    [22] C.-L. I, J. Huang, R. Duan, C. Cui, Jiang, J.X., and L. Li, “Recent progress on
    C-RAN centralization and cloudification,” IEEE Access, vol. 2, pp. 1030–1039,
    Sept. 2014.
    [23] K. Sundaresan, M. Y. Arslan, S. Singh, S. Rangarajan, and S. V. Krishnamurthy,
    “FluidNet: a flexible cloud-based radio access network for small cells,”
    in Proc. ACM MobiCom, Sept. 2013, pp. 99–110.
    [24] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet,
    “OpenAirInterface: A flexible platform for 5G research,” in Proc. ACM
    SigComm, vol. 44, no. 5, Oct. 2014, pp. 33–38.
    [25] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: software defined radio
    access network,” in Proc. ACM HotSDN, Aug. 2013, pp. 25–30.
    [26] W. Wu, L. E. Li, A. Panda, and S. Shenker, “PRAN: Programmable radio
    access networks,” in Proc. ACM HotNets, Oct. 2014, pp. 1–7.
    [27] R. Riggio, K. Gomez, L. Goratti, R. Fedrizzi, and T. Rasheed, “V-Cell: Going
    beyond the cell abstraction in 5G mobile networks,” in Proc. IEEE NOMS 2014,
    May 2014, pp. 1–5.
    [28] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: scalable and flexible
    cellular core network architecture,” in Proc. ACM CoNEXT 2013, Dec. 2013,
    pp. 163–174.
    [29] K. Pentikousis, Y. Wang, and W. Hu, “Mobileflow: Toward software-defined
    mobile networks,” IEEE Commun. Mag., vol. 51, no. 7, pp. 44–53, July 2013.
    [30] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: a softwaredefined
    RAN architecture via virtualization,” in Proc. ACM SigComm, vol. 43,
    no. 4, Oct. 2013, pp. 549–550.
    [31] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu, “CONCERT: A cloud-based
    architecture for next-generation cellular systems,” IEEE Wireless Commun.
    Mag., vol. 21, no. 6, pp. 14–22, Dec. 2014.
    [32] M. Y. Arslan, K. Sundaresan, and S. Rangarajan, “Software-defined networking
    in cellular radio access networks: potential and challenges,” IEEE Commun.
    Mag., vol. 53, no. 1, pp. 150–156, Jan. 2015.
    [33] Z. Zaidi, V. Friderikos, and M. A. Imran, “Future RAN architecture: SD-RAN
    through a general-purpose processing platform,” IEEE Veh. Technol. Mag.,
    vol. 10, no. 1, pp. 52–60, Mar. 2015.
    [34] I. Alyafawi, E. Schiller, T. Braun, D. Dimitrova, A. Gomes, and N. Nikaein,
    “Critical issues of centralized and cloudified LTE-FDD radio access networks,”
    in Proc. IEEE ICC 2015, June 2015, pp. 5523–5528.
    [35] S. Zhou, T. Zhao, Z. Niu, and S. Zhou, “Software-defined hyper-cellular architecture
    for green and elastic wireless access,” IEEE Commun. Mag., vol. 54,
    no. 1, pp. 12–19, Jan. 2016.
    [36] D. Bernstein, “Containers and cloud: From LXC to Docker to Kubernetes,”
    IEEE Trans. on Cloud Comput., vol. 1, no. 3, pp. 81–84, Sept. 2014.
    [37] Docker official site. [Online]. Available: https://www.docker.com/
    [38] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization to
    support PaaS,” in Proc. IEEE IC2E 2014, Mar. 2014, pp. 610–614.
    [39] USRP. [Online]. Available: http://www.ettus.com/

    無法下載圖示 全文公開日期 2021/02/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE