簡易檢索 / 詳目顯示

研究生: 簡于凱
Yu-Kai Chien
論文名稱: 直驅式電動手工具之馬達優化設計
Optimal Design of Direct-Drive Motors for Electric Hand-Tools
指導教授: 蕭弘清
Horng-Ching Hsiao
蕭鈞毓
Chun-Yu Hsiao
口試委員: 胡能忠
Neng-Chung Hu
王順源
Shun-Yuan Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 128
中文關鍵詞: 有限元素法直驅式馬達頓轉轉矩多重目標田口法
外文關鍵詞: finite element method, direct-drive motor, cogging torque, Taguchi method
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前市售之電動手工具機,受限於體積限制需配合小型馬達,為達到高扭力輸出須加裝減速機,但減速機會有轉換效率問題。此外,考量到手工具機會直接影響到使用者,尤其是動力手工具所產生之振動或是噪音影響,容易造成使用者在作業上感到不適;且在一些精密科技,對於螺絲鎖付之工序中,會需要降低振動影響。有鑑於此,本研究提出直驅式電動手工具之馬達優化設計。

本論文旨在探討有限元素法應用於直驅式馬達設計,主要以雙氣隙結構為基礎建立出雛型機達,為減少雛型機之振動與噪音,採用轉子斜槽降低頓轉轉矩,最終新型機透過多重目標田口法趨勢設計做優化,以降低定子矽鋼片磁通密度、反電動勢諧波含量,及維持輸出平均轉矩能在目標值以上,以此完成新型機設計。

根據有限元素軟體Flux 2D與Flux Skew分析結果,新型機之電磁轉矩平均值為1.0571 N-m,相較於無槽馬達可提高16.6倍;而轉矩密度則為4.793 kN-m/m3,與參照組馬達相比可提升2.78倍;轉矩漣波部分新型機較參照組低了5.31%,由8.22%降低至2.91%;反電動勢總諧波失真方面,較參照組無槽馬達低了0.47%,由1.40%降低至0.93%。


Currently, the volume of electric screwdrivers sold on the market is limited by the small size of motors that they need to be matched with. Besides, traditional electric screwdrivers would add speed reducers to increase the torque, but adding them may cause transmission efficiency problems. Thus, the screwdrivers must consider the conversion efficiency of the reducer. Considering that the electric screwdrivers will directly affect the users, especially the noise and the vibration impact generated by the power tool, which is more likely to make users feel uncomfortable during the operation. In some precise technology, it is necessary to reduce the vibration in the screw locking process. Consequently, this research intends to propose "optimal design of direct-drive motors for electric hand-tools".

This thesis aims to explore the application of the finite element method in direct-drive motor design. The main model motor is built based on the double air gap structure. To reduce the vibration and the noise of the prototype, the rotor with skewed slots is applied to reduce the cogging torque more effectively. Finally, the new model is optimized by a multi-target field method trend design to reduce the magnetic flux density and back electromotive force harmonic content of the silicon steel sheet and maintain the output average torque above the target value, thus completing the direct drive motor design optimization.

According to the analysis of the finite element software, Flux 2D and Flux Skew, the average electromagnetic torque of the innovative archetype is 1.0571 Nm, which is 16.6 times higher than the slotless motor, and the torque density is 4.793 kN-m/m3. Compared with the control group, it can be improved by 2.78 times. On the other hand, the torque ripple of the new archetype is 5.31% lower than the reference group, from 8.22% to 2.91%. Besides, the total EMF harmonic distortion of the pattern is 0.93% lower than the comparison of 1.40%.

摘要................................I Abstract...........................II 誌謝..............................III 目錄...............................IV 圖目錄.............................VI 表目錄..............................X 符號索引...........................XI 第一章 緒論.........................1 1.1 研究背景......................1 1.2 研究動機與目的.................2 1.3 手工具機國際市場概況...........3 1.4 文獻回顧......................9 1.5 論文大綱.....................12 第二章 永磁無刷直流馬達原理分析......15 2.1 前言.........................15 2.2 無刷直流馬達之結構分析........16 2.3 頓轉轉矩原理探討..............18 2.4 馬達諧波之研究................20 2.5 無槽式永磁同步馬達............25 2.6 結語.........................26 第三章 有限元素法之還原建模分析......27 3.1 前言.........................27 3.2 電動手工具機之馬達參考機型規格.28 3.3 參考機型馬達材料..............29 3.4 參考機型結構模型建立...........31 3.5 參考機型馬達之電磁場分析.......32 3.6 參考機型之定轉子結構變更.......38 3.7 結語..........................44 第四章 雙氣隙雛型機馬達設計與分析.....45 4.1 前言..........................45 4.2 不同槽極數組合之性能影響.......46 4.3 雛型機結構設計................52 4.4 磁石充磁方式..................60 4.5 雛型機繞線與電路設計.......... 61 4.6 雛型機之佔槽率與線圈阻抗計算...66 4.7 雛型機斜槽設計................67 4.8 雛型機3號之結構模型參數........69 4.9 雛型機3號之電磁場分析..........70 4.10 結語.........................73 第五章 新型機之田口法趨勢設計與分析...74 5.1 前言..........................74 5.2 多重目標田口法設計流程.........75 5.3 邊界條件與實驗因子選擇.........75 5.4 自由度計算與直交表選擇.........79 5.5 實驗因子之邊界條件分析.........81 5.6 有限元素法之直交表實驗.........83 5.7 多重目標信號雜訊比.............87 5.8 趨勢化全因子分析...............91 5.9 新型機轉子斜槽驗證分析.........96 5.10 結語........................100 第六章 新型機性能改良評估............101 6.1 前言.........................101 6.2 反電動勢峰值分析..............101 6.3 頓轉轉矩之比較................103 6.4 輸出轉矩特性之比較............104 6.5 結語.........................105 第七章 結論與未來研究建議............106 7.1 結論.........................106 7.2 未來研究建議.................107 參考文獻............................108

[1] Intergovernmental panel on climate change, IPCC, Global warming of 1.5 ºC. Available: https://www.ipcc.ch/sr15/
[2] The 24th Conference of the Parties, COP24, COP 24 Katowice 2018. Available: https://cop24.gov.pl/
[3] A. M. Zin, S. M. Idrus, N. A. Ismail, A. Ramli and R. A. Butt, "Energy efficient performance evaluation of XG-PON for sustainable green communication infrastructure," in progress in electromagnetics research symposium, 2018, vol. 2018-August, pp. 950-955.
[4] https://reurl.cc/0Y2Rx,東方財富網,2017年全國社會用電量分析:第二產業占比超七成,2018年01月22日。
[5] U. Büntgen, P. J. Krusic, A. Piermattei, D. A. Coomes, J. Esper, V. S. Myglan, A. V. Kirdyanov, J. J. Camarero, A. Crivellaro and C. Körner, "Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming," nature communications, article vol. 10, no. 1, 2019, art. no. 2171.
[6] T. Takemura and K. Suzuki, "Weak global warming mitigation by reducing black carbon emissions," scientific reports, article vol. 9, no. 1, 2019, art. no. 4419.
[7] L. Huang, G. Krigsvoll, F. Johansen, Y. Liu and X. Zhang, "Carbon emission of global construction sector," renewable and sustainable energy reviews, vol. 81, pp. 1906-1916, 2018/01/01/ 2018.
[8] Y. Zeng, X. Tan, B. Gu, Y. Wang and B. Xu, "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," applied energy, vol. 184, pp. 1016-1025, 2016.
[9] P. Waide and C. U. Brunner, "Energy-efficiency policy opportunities for electric motor-driven systems," 2011.
[10] International trade centre, trade map - international trade statistics. Available: https://www.trademap.org/tradestat/Index.aspx
[11] https://reurl.cc/Xv49e,台灣經濟部國際貿易局,中華民國–歷年進出口貿易統計。
[12] 陳鶴斌,電動螺絲起子驅動器之研製,國立臺灣科技大學電機工程系碩士論文,2018年。
[13] J. Wang, R. Qu and L. Zhou, "Dual-rotor multiphase permanent magnet machine with harmonic injection to enhance torque density," IEEE transactions on applied superconductivity, vol. 22, no. 3, pp. 5202204-5202204, 2012.
[14] D. C. Hanselman, brushless permanent magnet motor design. The Writers' Collective, 2003.
[15] M. Rosu, P. Zhou, D. Lin, D. M. Ionel, M. Popescu, F. Blaabjerg, V. Rallabandi, and D. Staton, Multiphysics simulation by design for electrical machines, power electronics and drives: John Wiley & Sons, 2017.
[16] Z. KHAN. (2015). Highly dynamic brushless DC motors from maxon: compact yet powerful. Available: https://reurl.cc/a6k73
[17] 蕭鈞毓,高性能永磁式同步風力發電機之設計,國立臺灣科技大學電機工程系博士論文,2012年。
[18] 郭景全,降低永磁無刷馬達頓轉轉矩之研究,逢甲大學資訊電機工程碩士在職專班碩士論文,2006年。
[19] S. J. Chapman, electric machinery fundamentals, 5e. McGraw-Hill international enterprises, 2012.
[20] A. M. E.-. Refaie, "Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges," IEEE transactions on industrial electronics, vol. 57, no. 1, pp. 107-121, 2010.
[21] D. COLLINS. (2017). What are the differences between slotted and slotless motors? Available: https://reurl.cc/EOpam
[22] L. EITEL. (2018). Brushless dc motors for industrial power tools: Comparison of options including slotless motor variations. Available: https://reurl.cc/7189D
[23] https://reurl.cc/49o9D,螺絲扭力大小參考標準。
[24] http://t.cn/RkhccwX,鎖螺絲扭力。
[25] Nippon Steel Corporation, "Electrical steel sheets."

[26] 黃昌圳,有限元素法在電機工程的應用 (Finite element methods in electrical engineering),全華科技圖書,2005年10月。
[27] N. Stranges, "Calculation of the starting performance of solid pole synchronous motors by the time-stepping finite element method," in 2008 IEEE power and energy society general meeting - conversion and delivery of electrical energy in the 21st century, 2008, pp. 1-4.
[28] Z. Azar, Z. Q. Zhu and G. Ombach, "Influence of electric loading and magnetic saturation on cogging torque, back-EMF and torque ripple of PM machines," IEEE transactions on magnetics, vol. 48, no. 10, pp. 2650-2658, 2012.
[29] 林筱渝,電動手工具的轉矩感測器及驅動器研製,國立臺灣科技大學電機工程系碩士論文,2014年。
[30] D. COLLINS. (2018). External rotor motor basics: Design and applications. Available: https://reurl.cc/Q8LLO
[31] I. W. Lan and H. Ho, "Slot and pole ratio of permanent magnet synchronous motor for cogging torque and torque ripple performance," in 2018 international conference of electrical and electronic technologies for automotive, 2018, pp. 1-5.
[32] L. Xu, G. Liu, W. Zhao, J. Ji, H. Zhou, W. Zhao and T. Jiang, "Quantitative comparison of integral and fractional slot permanent magnet vernier motors," IEEE transactions on energy conversion, vol. 30, no. 4, pp. 1483-1495, 2015.
[33] https://reurl.cc/l6gVj,路昌工業股份有限公司,英國無刷馬達創新應用專案開發培訓班,2012年5月28日。
[34] L. J. Wu, Z. Q. Zhu, D. A. Staton, M. Popescu and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted PM machines," IEEE transactions on industrial electronics, vol. 59, no. 6, pp. 2414-2425, 2012.
[35] 余守龍,永磁無刷起動發電機之設計與實現,國立成功大學系統及船舶機電工程學系碩士論文,2010年。
[36] 許裕昇,新型推進器馬達之磁路分析與設計,國立成功大學系統及船舶機電工程學系碩士論文,2005年。

[37] 簡廷宇,小容量永磁無刷直流馬達之最佳化設計,國立臺灣科技大學電機工程系碩士論文,2016年。
[38] J. W. Jiang, B. Bilgin, Y. Yang, A. Sathyan, H. Dadkhah and A. Emadi, "Rotor skew pattern design and optimisation for cogging torque reduction," IET electrical systems in transportation, vol. 6, no. 2, pp. 126-135, 2016.
[39] D. C. Hanselman, "Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF," IEE proceedings-electric power applications, vol. 144, no. 5, pp. 325-330, 1997.
[40] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2011年5月1日。
[41] T. Jinn-Tsong, L. Tung-Kuan and C. Jyh-Horng, "Hybrid Taguchi-genetic algorithm for global numerical optimization," IEEE transactions on evolutionary computation, vol. 8, no. 4, pp. 365-377, 2004.
[42] J. G. Washington, G. J. Atkinson and N. J. Baker, "Reduction of cogging torque and EMF harmonics in modulated pole machines," IEEE transactions on energy conversion, vol. 31, no. 2, pp. 759-768, 2016.
[43] W. Liang, J. Wang, P. C. Luk, W. Fang and W. Fei, "Analytical modeling of current harmonic components in PMSM drive with voltage-source inverter by SVPWM technique," IEEE transactions on energy conversion, vol. 29, no. 3, pp. 673-680, 2014.

無法下載圖示 全文公開日期 2024/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE