簡易檢索 / 詳目顯示

研究生: 江政謀
Cheng-Mou Chiang
論文名稱: 軟體定義網路之網路功能虛擬化中介系統設計
Component-based Network Function Virtualization Middleware in Software-Defined Networking
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 郭斯彥
Sy-Yen Kuo
黎碧煌
Bih-Hwang Lee
黃能富
Nen-Fu Huang
陳英一
Ing-Yi Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 軟體定義網路網路功能虛擬化中介系統服務鏈資源分配
外文關鍵詞: Software-Defined Networking (SDN), Network Function Virtualization (NFV), Middleware, Service Chain, Resource Allocation
相關次數: 點閱:380下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今網路通訊技術的蓬勃發展之下,網路服務型已隨之改變,現今資料儲存、運算與服務方式紛紛走向虛擬化與雲端化,過去傳統網路架構與服務方式逐漸不符合需求。軟體定義網路提供一個可程式化、更靈活且更方便網路管理與設置的環境,而網路功能虛擬化將多種類型的網路服務虛擬化,降低網路建置之複雜度,亦解決原先網路功能專屬設備間相容性的問題,提升網路配置的效率,藉由上述兩種技術相互配合,提高網路環境建置效率與降低網路維護的難度。
    本研究致力於高效能與高可靠度之網路功能虛擬化系統設計,網路功能虛擬化中介系統依據使用者的需求進行網路功能的配置,針對環境中已啟動之網路功能服務進行效能分析,選擇適當之網路功能進行配置工作,規劃出合適之網路功能服務鏈給予使用者使用,並於負載變化時視情形調整負載量,確保使用者能有較良好的服務品質,亦為使用者規劃不同等級的權利,解決因規劃不完善所造成的缺失,確保擁有較高優先權利使用者能有較高之服務品質保證。為了將中介系統的決策應用於整體網路之中,SDN控制器運用南向接口與網路功能虛擬化中介系統進行通訊,控制器接收網路功能虛擬化基礎架構的資訊以及中介系統的決策事項,規劃整體網路環境,實現軟體定義網路與網路功能虛擬化之結合作業,提升整體網路的運作效率。
    本研究提出網路功能服務鏈配置機制與網路功能資源調整機制,藉此提升網路功能運作效率。中介系統分析虛擬網路功能的使用情形,挑選最為適當的網路功能並加入於服務鏈中,擬定出符合使用者需求之服務鏈。中介系統亦隨時監視虛擬網路功能的使用情形,依據情況調整負載分配,解決網路功能使用效率不彰的問題。本研究提出之網路功能虛擬化系統設計,能夠有效提升約30%的網路使用效率,並降低封包遺失率以提升網路服務可靠度約1.5%。


    With the rapid development of network communication technology today, the type of network services has been changed. Data storage, computing, and the type of network services have become virtualization and the cloud. Network architecture and the type of network services in the past do not meet the needs gradually. Software-defined networking provides a programmable, flexible, and easily management and setting for network environment. Network function virtualization is able to virtualize the variable types of network function, reduce the complexity to setup the network environment, and solve the compatibility issues of network function devices, to improve the efficiency to build the network. With the complement between above technologies, the efficiency of setting the network environment has been improved and the difficulty of maintaining the environment has been decreased.
    This work proposes network function virtualization middleware to improve the efficiency and reliability of the network environment. Middleware analyzes the utilization of virtualized network function to make decisions of how to build the service chain. In addition, Middleware will monitors the NFV environment periodically to make sure that all virtualized network functions can work efficiently. If there are any virtualized network function in heavy-load or light-load state, the resource manager in middleware will adjust the load in the virtualized network function to distribute the load in the virtualized network function. SDN controller receives the decision and the information of network function virtualization infrastructure by southbound interface to setup the overall network environment.
    This work proposes the service chaining mechanism and resource allocation mechanism in network function virtualization middleware. Middleware will analyzes the virtualized network function in the environment to schedule the suitable service chain for user. In addition, middleware also monitors the resource utilization about the virtualized network function and adjust the load of virtualized network function depend on the situation to decrease the problem of ineffective usage of the network function. Based on the proposed network function virtualization system, the network efficiency has improved about 30% and the reliability has improved about 1.5% by reduce packet loss rate of the network.

    摘要 I Abstract II 致謝 IV Contents V List of Figures VII List of Tables IX Notations X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Topic 3 1.3 Contribution 5 1.4 Organization of This Thesis 6 Chapter 2 Background Knowledge 7 2.1 Software-Defined Networking Technology 7 2.1.1 Software-Defined Networking 7 2.1.2 Southbound Interface 9 2.1.3 OpenFlow Protocol 10 2.2 Network Function Virtualization Technology 13 2.2.1 Network Function Virtualization 13 2.2.2 NFV in ETSI 16 2.2.3 NFV Architecture Framework 19 2.3 Comparison of SDN and NFV 20 Chapter 3 System Architecture 22 3.1 System Overview 22 3.2 Proposed NFV Architecture 23 3.3 Network Manager 27 3.4 NFV Manager 29 3.4.1 Priority Handler 30 3.4.2 Service Chaining 33 3.5 Resource Manager 37 3.5.1 Monitor and Database 38 3.5.2 Resource Allocation 43 Chapter 4 System Design and Performance Analysis 52 4.1 System Implementation 52 4.2 System Design 55 4.2.1 Ryu Controller Installation 55 4.2.2 Mininet Installation 57 4.2.3 VMware ESXi Installation 59 4.2.4 VMware vCenter Installation 61 4.3 Performance Analysis 64 Chapter 5 Conclusion and Future Work 75 5.1 Conclusion 75 5.2 Future Work 76 References 78

    [1] F. Hu, Q. Hao and K. Bao, “A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation,” IEEE Communications Surveys & Tutorials, Vol.16, No.4, pp.2181-2206, 2014.
    [2] J. J. Gil and J. F. Botero, “Network Functions Virtualization: A Survey,” IEEE Latin America Transactions, Vol.14, No.2, pp.983-997, 2016.
    [3] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia and W. Kellerer, “An Extended SDN Architecture for Network Function Virtualization with a Case Study on Intrusion Prevention,” IEEE Network, Vol. 29, No.3, pp.48-53, 2015.
    [4] C. Jeong, T. Ha, J. Narantuya, H. Lim and J. Kim, “Scalable Network Intrusion Detection on Virtual SDN Environment,” Proceedings of the IEEE International Conference on Cloud Networking, pp.264-265, 2014.
    [5] J. Matias, J. Garay, N. Toledo, J. Unzilla and E. Jacob, “Toward an SDN-Enabled NFV Architecture,” IEEE Communications Magazine, Vol. 54, No.4, pp.187-193, 2015.
    [6] R. Chaparadza, T. Ben Meriem, J. Strassner, B. Radier, S. Soulhi, J. Ding and Z. Yan, “Industry Harmonization for Unified Standards on Autonomic Management & Control (AMC) of Networks and Services, SDN and NFV,” Proceedings of Globecom Workshops, pp.155-160, 2014.
    [7] R. Muñoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Autenrieth, V. López and D. López, “Integrated SDN/NFV Management and Orchestration Architecture for Dynamic Deployment of Virtual SDN Control Instances for Virtual Tenant Networks,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 7, No.11, pp.62-70, 2015.
    [8] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia and W. Kellerer, “Interfaces, Attributes, and Use Cases: A Compass for SDN,” IEEE Communications Magazine, Vol. 52, No.6, pp.210-217, 2014.
    [9] R. Chaparadza, T. Ben Meriem, J. Strassner, B. Radier, S. Soulhi, J. Ding and Z. Yan, “Software-Defined Network Exchanges (SDXs) and Infrastructure (SDI): Emerging Innovations in SDN and SDI Interdomain Multi-layer Services and Capabilities,” Proceedings of 2014 Science and Technology Conference, pp.28-29, 2014.
    [10] K. Govindarajan, K.C. Meng, H. Ong, W.M. Tat, S. Sivanand and L.S. Leong, “Realizing the Quality of Service (QoS) in Software-Defined Networking (SDN) based Cloud Infrastructure,” Proceedings of 2nd International Conference on Information and Communication Technology, pp.505-510, 2014.
    [11] R. Munoz, R. Vilalta, R. Casellas and R. Martínez, “SDN Orchestration and Virtualization of Heterogeneous Multi-domain and Multi-layer Transport Networks: The STRAUSS Approach,” Proceedings of IEEE International Black Sea Conference on Communications and Networking, pp.142-146, 2015.
    [12] S. Scott-Hayward, “Design and Deployment of Secure, Robust, and Resilient SDN Controllers,” Proceedings of 1st IEEE Conference on Network Softwarization, pp.1-5, 2015.
    [13] L. Li, W. Chou, W. Zhou and M. Luo, “Design Patterns and Extensibility of REST API for Networking Applications,” IEEE Transactions on Network and Service Management, Vol.13, No.1, pp.154-167, 2016.
    [14] A. Blenk, A. Basta, M. Reisslein, W. Kellerer and M. Luo, “Survey on Network Virtualization Hypervisors for Software Defined Networking,” IEEE Communications Surveys & Tutorials, Vol.18, No.1, pp.655-685, 2016.
    [15] Nishtha and M. Sood, “Software Defined Network — Architectures,” Proceedings of the International Conference on Parallel, Distributed and Grid Computing, pp.451-456, 2014.
    [16] A Lara, A. Kolasani and B. Ramamurthy, “Network Innovation Using OpenFlow: A Survey,” IEEE Communications Surveys & Tutorials, Vol.16, No.1, pp.493-512, 2014.
    [17] George Tarnaras, E. Haleplidis and S. Denazis, “SDN and ForCES Based Optimal Network Topology Discovery,” Proceedings of the 1st IEEE Conference on Network Softwarization, pp.1-6, 2015.
    [18] S. Yamashita, A. Yamada, K. Nakatsugawa, T. Soumiya, M. Miyabe and T. Katagiri, “Extension of OpenFlow Protocol to Support Optical Transport Network, and its Implementation,” Proceedings of the 1st IEEE Conference on Standards for Communications and Networking, pp.263-268, 2015.
    [19] X. Cao, N. Yoshikane. T. Tsuritani, I. Morita, M. Suzuki, T. Miyazawa, M. Shiraiwa and N. Wada, “Dynamic Openflow-Controlled Optical Packet Switching Network,” Journal of Lightwave Technology, Vol.33, No.8, pp.1500-1507, 2015.
    [20] J.H. Lam, S.G. Lee. H.J. Lee and Y.E. Oktian, “Securing Distributed SDN with IBC,” Proceedings of the Seventh International Conference on Ubiquitous and Future Networks, pp.921-925, 2015.
    [21] X. Sun, T. S. E. Ng and G. Wang, “Software-Defined Flow Table Pipeline,” Proceedings of the IEEE International Conference on Cloud Engineering, pp.335-340, 2015.
    [22] E.D. Kim, Y. Choi, S.I. Lee, M.K. Shin and H.J. Kim, “Flow Table Management Scheme Applying an LRU Caching Algorithm,” Proceedings of the International Conference on Information and Communication Technology Convergence, pp.335-340, 2014.
    [23] J. Garay, J. Matias, J. Unzilla and Eduardo Jacob, “Service Description in the NFV Revolution: Trends, Challenges and a Way Forward,” IEEE Communications Magazine, Vol.54, No.3, pp.68-74, 2016.
    [24] D. Cotroneo, L. D. Simone, A. K. Iannillo, A. Lanzaro and R. Natella, “Dependability Evaluation and Benchmarking of Network Function Virtualization Infrastructures,” Proceedings of the 1st IEEE Conference on Network Softwarization, pp.1-9, 2015.
    [25] B. Han, V. Gopalakrishnan, L. Ji and S. Lee, “Network Function Virtualization: Challenges and Opportunities for Innovations,” IEEE Communications Magazine, Vol.52, No.2, pp.90-97, 2015.
    [26] D. Rajan, “Common Platform Architecture for Network Function Virtualization Deployments,” Proceedings of the 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, pp.73-78, 2016.
    [27] L. R. Battula, “Network Security Function Virtualization NSFV) towards Cloud Computing with NFV Over Openflow Infrastructure: Challenges and Novel Approaches,” Proceedings of the International Conference on Advances in Computing, Communications and Informatics, pp.1622-1628, 2014.
    [28] B. Nemeth, X. Simonart, N. Oliver and W. Lamotte, “The Limits of Architectural Abstraction in Network Function Virtualization,” Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management, pp.633-639, 2015.
    [29] B. Jaeger, “Security Orchestrator: Introducing a Security Orchestrator in the Context of the ETSI NFV Reference Architecture,” IEEE Trustcom/BigDataSE/ISPA, Vol.1, pp.1255-1260, 2015.
    [30] S. V. Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet and P. Demeester, “Deploying Elastic Routing Capability in an SDN/NFV-enabled Environment,” Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Network, pp.22-24, 2015.
    [31] M. Miyazawa, M. Hayashi and R. Stadler, “vNMF: Distributed Fault Detection Using Clustering Approach for Network Function Virtualization,” Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management, pp.640-645, 2015.
    [32] H. Jeon and B. Lee, “Network Service Chaining Challenges for VNF Outsourcing in Network Function Virtualization,” Proceedings of the International Conference on Information and Communication Technology Convergence, pp.819-821, 2015.
    [33] S. Q. Zhang, Q. Zhang, H. Bannazadeh and A. Leon-Garcia, “Routing Algorithms for Network Function Virtualization Enabled Multicast Topology on SDN,” IEEE Transactions on Network and Service Management, Vol.12, No.4, pp.580-694, 2015.
    [34] T. Kim, S. Kim, K. Lee and S. Park, “A QoS Assured Network Service Chaining Algorithm in Network Function Virtualization Architecture,” Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp.1221-1224, 2015.
    [35] Y.L. Chen, Y. Qin, M. Lambe and W. Chu, “Realizing Network Function Virtualization Management and Orchestration with Model Based Open Architecture,” Proceedings of the 11th International Conference on Network and Service Management, pp.410-418, 2015.
    [36] P. Iovanna, F. Ubaldi, T. Pepe, L. M. Contreras, V. Lopez, Fernandez-Palacios Gimenez and J.P., “Main Challenges on WAN due to NFV and SDN: Multi-layer and Multi-domain Network Virtualization and Routing,” Proceedings of International Conference on Optical Network Design and Modeling, pp.74-79, 2015.
    [37] H. Masutani, Y. Nakajima, T. Kinoshita, T. Hibi, H. Takahashi, K. Obana, K. Shimano and M. Fukui, “Requirements and Design of Flexible NFV Network Infrastructure Node Leveraging SDN/OpenFlow,” Proceedings of International Conference on Optical Network Design and Modeling, pp.258-263, 2014.
    [38] D. V. Bernardo and B. B. Chua, “Introduction and Analysis of SDN and NFV Security Architecture (SN-SECA),” Proceedings of IEEE International Conference on Advanced Information Networking and Applications, pp.796-801, 2015.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE